| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb2or | Unicode version | ||
| Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1859 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.) |
| Ref | Expression |
|---|---|
| nfsb2or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4or 1856 |
. 2
| |
| 2 | sb2 1790 |
. . . . . . 7
| |
| 3 | 2 | a5i 1566 |
. . . . . 6
|
| 4 | 3 | imim2i 12 |
. . . . 5
|
| 5 | 4 | alimi 1478 |
. . . 4
|
| 6 | df-nf 1484 |
. . . 4
| |
| 7 | 5, 6 | sylibr 134 |
. . 3
|
| 8 | 7 | orim2i 763 |
. 2
|
| 9 | 1, 8 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: sbequi 1862 |
| Copyright terms: Public domain | W3C validator |