Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsb2or | Unicode version |
Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1829 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.) |
Ref | Expression |
---|---|
nfsb2or |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4or 1826 | . 2 | |
2 | sb2 1760 | . . . . . . 7 | |
3 | 2 | a5i 1536 | . . . . . 6 |
4 | 3 | imim2i 12 | . . . . 5 |
5 | 4 | alimi 1448 | . . . 4 |
6 | df-nf 1454 | . . . 4 | |
7 | 5, 6 | sylibr 133 | . . 3 |
8 | 7 | orim2i 756 | . 2 |
9 | 1, 8 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 703 wal 1346 wnf 1453 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbequi 1832 |
Copyright terms: Public domain | W3C validator |