ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb2or Unicode version

Theorem nfsb2or 1837
Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1836 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.)
Assertion
Ref Expression
nfsb2or  |-  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph )

Proof of Theorem nfsb2or
StepHypRef Expression
1 sb4or 1833 . 2  |-  ( A. x  x  =  y  \/  A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
2 sb2 1767 . . . . . . 7  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
32a5i 1543 . . . . . 6  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x [ y  /  x ] ph )
43imim2i 12 . . . . 5  |-  ( ( [ y  /  x ] ph  ->  A. x
( x  =  y  ->  ph ) )  -> 
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
54alimi 1455 . . . 4  |-  ( A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
)  ->  A. x
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
6 df-nf 1461 . . . 4  |-  ( F/ x [ y  /  x ] ph  <->  A. x
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
75, 6sylibr 134 . . 3  |-  ( A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
)  ->  F/ x [ y  /  x ] ph )
87orim2i 761 . 2  |-  ( ( A. x  x  =  y  \/  A. x
( [ y  /  x ] ph  ->  A. x
( x  =  y  ->  ph ) ) )  ->  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph ) )
91, 8ax-mp 5 1  |-  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708   A.wal 1351   F/wnf 1460   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  sbequi  1839
  Copyright terms: Public domain W3C validator