ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb2or Unicode version

Theorem nfsb2or 1830
Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1829 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.)
Assertion
Ref Expression
nfsb2or  |-  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph )

Proof of Theorem nfsb2or
StepHypRef Expression
1 sb4or 1826 . 2  |-  ( A. x  x  =  y  \/  A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
2 sb2 1760 . . . . . . 7  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
32a5i 1536 . . . . . 6  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x [ y  /  x ] ph )
43imim2i 12 . . . . 5  |-  ( ( [ y  /  x ] ph  ->  A. x
( x  =  y  ->  ph ) )  -> 
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
54alimi 1448 . . . 4  |-  ( A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
)  ->  A. x
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
6 df-nf 1454 . . . 4  |-  ( F/ x [ y  /  x ] ph  <->  A. x
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
75, 6sylibr 133 . . 3  |-  ( A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
)  ->  F/ x [ y  /  x ] ph )
87orim2i 756 . 2  |-  ( ( A. x  x  =  y  \/  A. x
( [ y  /  x ] ph  ->  A. x
( x  =  y  ->  ph ) ) )  ->  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph ) )
91, 8ax-mp 5 1  |-  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703   A.wal 1346   F/wnf 1453   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  sbequi  1832
  Copyright terms: Public domain W3C validator