ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsb2or Unicode version

Theorem nfsb2or 1825
Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1824 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.)
Assertion
Ref Expression
nfsb2or  |-  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph )

Proof of Theorem nfsb2or
StepHypRef Expression
1 sb4or 1821 . 2  |-  ( A. x  x  =  y  \/  A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
) )
2 sb2 1755 . . . . . . 7  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
32a5i 1531 . . . . . 6  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x [ y  /  x ] ph )
43imim2i 12 . . . . 5  |-  ( ( [ y  /  x ] ph  ->  A. x
( x  =  y  ->  ph ) )  -> 
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
54alimi 1443 . . . 4  |-  ( A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
)  ->  A. x
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
6 df-nf 1449 . . . 4  |-  ( F/ x [ y  /  x ] ph  <->  A. x
( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph ) )
75, 6sylibr 133 . . 3  |-  ( A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph )
)  ->  F/ x [ y  /  x ] ph )
87orim2i 751 . 2  |-  ( ( A. x  x  =  y  \/  A. x
( [ y  /  x ] ph  ->  A. x
( x  =  y  ->  ph ) ) )  ->  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph ) )
91, 8ax-mp 5 1  |-  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698   A.wal 1341   F/wnf 1448   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbequi  1827
  Copyright terms: Public domain W3C validator