| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfsb2or | Unicode version | ||
| Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1850 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| nfsb2or | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb4or 1847 | 
. 2
 | |
| 2 | sb2 1781 | 
. . . . . . 7
 | |
| 3 | 2 | a5i 1557 | 
. . . . . 6
 | 
| 4 | 3 | imim2i 12 | 
. . . . 5
 | 
| 5 | 4 | alimi 1469 | 
. . . 4
 | 
| 6 | df-nf 1475 | 
. . . 4
 | |
| 7 | 5, 6 | sylibr 134 | 
. . 3
 | 
| 8 | 7 | orim2i 762 | 
. 2
 | 
| 9 | 1, 8 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbequi 1853 | 
| Copyright terms: Public domain | W3C validator |