| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsb2or | Unicode version | ||
| Description: Bound-variable hypothesis builder for substitution. Similar to hbsb2 1850 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.) |
| Ref | Expression |
|---|---|
| nfsb2or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4or 1847 |
. 2
| |
| 2 | sb2 1781 |
. . . . . . 7
| |
| 3 | 2 | a5i 1557 |
. . . . . 6
|
| 4 | 3 | imim2i 12 |
. . . . 5
|
| 5 | 4 | alimi 1469 |
. . . 4
|
| 6 | df-nf 1475 |
. . . 4
| |
| 7 | 5, 6 | sylibr 134 |
. . 3
|
| 8 | 7 | orim2i 762 |
. 2
|
| 9 | 1, 8 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: sbequi 1853 |
| Copyright terms: Public domain | W3C validator |