Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb4bor | Unicode version |
Description: Simplified definition of substitution when variables are distinct, expressed via disjunction. (Contributed by Jim Kingdon, 18-Mar-2018.) |
Ref | Expression |
---|---|
sb4bor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4or 1831 | . 2 | |
2 | sb2 1765 | . . . . 5 | |
3 | df-bi 117 | . . . . . 6 | |
4 | 3 | simpri 113 | . . . . 5 |
5 | 2, 4 | mpan2 425 | . . . 4 |
6 | 5 | alimi 1453 | . . 3 |
7 | 6 | orim2i 761 | . 2 |
8 | 1, 7 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wo 708 wal 1351 wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |