Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb4bor | Unicode version |
Description: Simplified definition of substitution when variables are distinct, expressed via disjunction. (Contributed by Jim Kingdon, 18-Mar-2018.) |
Ref | Expression |
---|---|
sb4bor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4or 1826 | . 2 | |
2 | sb2 1760 | . . . . 5 | |
3 | df-bi 116 | . . . . . 6 | |
4 | 3 | simpri 112 | . . . . 5 |
5 | 2, 4 | mpan2 423 | . . . 4 |
6 | 5 | alimi 1448 | . . 3 |
7 | 6 | orim2i 756 | . 2 |
8 | 1, 7 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wal 1346 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |