ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbothdadc Unicode version

Theorem ifbothdadc 3551
Description: A formula  th containing a decidable conditional operator is true when both of its cases are true. (Contributed by Jim Kingdon, 3-Jun-2022.)
Hypotheses
Ref Expression
ifbothdc.1  |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th )
)
ifbothdc.2  |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch  <->  th )
)
ifbothdadc.3  |-  ( ( et  /\  ph )  ->  ps )
ifbothdadc.4  |-  ( ( et  /\  -.  ph )  ->  ch )
ifbothdadc.dc  |-  ( et 
-> DECID  ph )
Assertion
Ref Expression
ifbothdadc  |-  ( et 
->  th )

Proof of Theorem ifbothdadc
StepHypRef Expression
1 ifbothdadc.3 . . 3  |-  ( ( et  /\  ph )  ->  ps )
2 iftrue 3525 . . . . . 6  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
32eqcomd 2171 . . . . 5  |-  ( ph  ->  A  =  if (
ph ,  A ,  B ) )
4 ifbothdc.1 . . . . 5  |-  ( A  =  if ( ph ,  A ,  B )  ->  ( ps  <->  th )
)
53, 4syl 14 . . . 4  |-  ( ph  ->  ( ps  <->  th )
)
65adantl 275 . . 3  |-  ( ( et  /\  ph )  ->  ( ps  <->  th )
)
71, 6mpbid 146 . 2  |-  ( ( et  /\  ph )  ->  th )
8 ifbothdadc.4 . . 3  |-  ( ( et  /\  -.  ph )  ->  ch )
9 iffalse 3528 . . . . . 6  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
109eqcomd 2171 . . . . 5  |-  ( -. 
ph  ->  B  =  if ( ph ,  A ,  B ) )
11 ifbothdc.2 . . . . 5  |-  ( B  =  if ( ph ,  A ,  B )  ->  ( ch  <->  th )
)
1210, 11syl 14 . . . 4  |-  ( -. 
ph  ->  ( ch  <->  th )
)
1312adantl 275 . . 3  |-  ( ( et  /\  -.  ph )  ->  ( ch  <->  th )
)
148, 13mpbid 146 . 2  |-  ( ( et  /\  -.  ph )  ->  th )
15 ifbothdadc.dc . . 3  |-  ( et 
-> DECID  ph )
16 exmiddc 826 . . 3  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
1715, 16syl 14 . 2  |-  ( et 
->  ( ph  \/  -.  ph ) )
187, 14, 17mpjaodan 788 1  |-  ( et 
->  th )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1343   ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-if 3521
This theorem is referenced by:  hashgcdeq  12171
  Copyright terms: Public domain W3C validator