| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbothdadc | Unicode version | ||
| Description: A formula |
| Ref | Expression |
|---|---|
| ifbothdc.1 |
|
| ifbothdc.2 |
|
| ifbothdadc.3 |
|
| ifbothdadc.4 |
|
| ifbothdadc.dc |
|
| Ref | Expression |
|---|---|
| ifbothdadc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbothdadc.3 |
. . 3
| |
| 2 | iftrue 3580 |
. . . . . 6
| |
| 3 | 2 | eqcomd 2212 |
. . . . 5
|
| 4 | ifbothdc.1 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | 1, 6 | mpbid 147 |
. 2
|
| 8 | ifbothdadc.4 |
. . 3
| |
| 9 | iffalse 3583 |
. . . . . 6
| |
| 10 | 9 | eqcomd 2212 |
. . . . 5
|
| 11 | ifbothdc.2 |
. . . . 5
| |
| 12 | 10, 11 | syl 14 |
. . . 4
|
| 13 | 12 | adantl 277 |
. . 3
|
| 14 | 8, 13 | mpbid 147 |
. 2
|
| 15 | ifbothdadc.dc |
. . 3
| |
| 16 | exmiddc 838 |
. . 3
| |
| 17 | 15, 16 | syl 14 |
. 2
|
| 18 | 7, 14, 17 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-if 3576 |
| This theorem is referenced by: bitsinv1lem 12342 bitsinv1 12343 hashgcdeq 12632 |
| Copyright terms: Public domain | W3C validator |