Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashgcdeq | Unicode version |
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
hashgcdeq | ♯ ..^ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2175 | . 2 ♯ ..^ ♯ ..^ | |
2 | eqeq2 2175 | . 2 ♯ ..^ ♯ ..^ | |
3 | nndivdvds 11736 | . . . . 5 | |
4 | 3 | biimpa 294 | . . . 4 |
5 | dfphi2 12152 | . . . 4 ♯ ..^ | |
6 | 4, 5 | syl 14 | . . 3 ♯ ..^ |
7 | 0z 9202 | . . . . . 6 | |
8 | 4 | nnzd 9312 | . . . . . 6 |
9 | fzofig 10367 | . . . . . 6 ..^ | |
10 | 7, 8, 9 | sylancr 411 | . . . . 5 ..^ |
11 | elfzoelz 10082 | . . . . . . . . . 10 ..^ | |
12 | 11 | adantl 275 | . . . . . . . . 9 ..^ |
13 | 8 | adantr 274 | . . . . . . . . 9 ..^ |
14 | 12, 13 | gcdcld 11901 | . . . . . . . 8 ..^ |
15 | 14 | nn0zd 9311 | . . . . . . 7 ..^ |
16 | 1zzd 9218 | . . . . . . 7 ..^ | |
17 | zdceq 9266 | . . . . . . 7 DECID | |
18 | 15, 16, 17 | syl2anc 409 | . . . . . 6 ..^ DECID |
19 | 18 | ralrimiva 2539 | . . . . 5 ..^ DECID |
20 | 10, 19 | ssfirab 6899 | . . . 4 ..^ |
21 | eqid 2165 | . . . . . 6 ..^ ..^ | |
22 | eqid 2165 | . . . . . 6 ..^ ..^ | |
23 | eqid 2165 | . . . . . 6 ..^ ..^ | |
24 | 21, 22, 23 | hashgcdlem 12170 | . . . . 5 ..^ ..^ ..^ |
25 | 24 | 3expa 1193 | . . . 4 ..^ ..^ ..^ |
26 | 20, 25 | fihasheqf1od 10703 | . . 3 ♯ ..^ ♯ ..^ |
27 | 6, 26 | eqtr2d 2199 | . 2 ♯ ..^ |
28 | simprr 522 | . . . . . . . . . 10 ..^ | |
29 | elfzoelz 10082 | . . . . . . . . . . . . 13 ..^ | |
30 | 29 | ad2antrl 482 | . . . . . . . . . . . 12 ..^ |
31 | nnz 9210 | . . . . . . . . . . . . 13 | |
32 | 31 | ad2antrr 480 | . . . . . . . . . . . 12 ..^ |
33 | gcddvds 11896 | . . . . . . . . . . . 12 | |
34 | 30, 32, 33 | syl2anc 409 | . . . . . . . . . . 11 ..^ |
35 | 34 | simprd 113 | . . . . . . . . . 10 ..^ |
36 | 28, 35 | eqbrtrrd 4006 | . . . . . . . . 9 ..^ |
37 | 36 | expr 373 | . . . . . . . 8 ..^ |
38 | 37 | con3d 621 | . . . . . . 7 ..^ |
39 | 38 | impancom 258 | . . . . . 6 ..^ |
40 | 39 | ralrimiv 2538 | . . . . 5 ..^ |
41 | rabeq0 3438 | . . . . 5 ..^ ..^ | |
42 | 40, 41 | sylibr 133 | . . . 4 ..^ |
43 | 42 | fveq2d 5490 | . . 3 ♯ ..^ ♯ |
44 | hash0 10710 | . . 3 ♯ | |
45 | 43, 44 | eqtrdi 2215 | . 2 ♯ ..^ |
46 | dvdsdc 11738 | . . . 4 DECID | |
47 | 31, 46 | sylan2 284 | . . 3 DECID |
48 | 47 | ancoms 266 | . 2 DECID |
49 | 1, 2, 27, 45, 48 | ifbothdadc 3551 | 1 ♯ ..^ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 crab 2448 c0 3409 cif 3520 class class class wbr 3982 cmpt 4043 wf1o 5187 cfv 5188 (class class class)co 5842 cfn 6706 cc0 7753 c1 7754 cmul 7758 cdiv 8568 cn 8857 cz 9191 ..^cfzo 10077 ♯chash 10688 cdvds 11727 cgcd 11875 cphi 12141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-sup 6949 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-dvds 11728 df-gcd 11876 df-phi 12143 |
This theorem is referenced by: phisum 12172 |
Copyright terms: Public domain | W3C validator |