ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashgcdeq Unicode version

Theorem hashgcdeq 11904
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashgcdeq  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
)  =  if ( N  ||  M , 
( phi `  ( M  /  N ) ) ,  0 ) )
Distinct variable groups:    x, M    x, N

Proof of Theorem hashgcdeq
Dummy variables  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2149 . 2  |-  ( ( phi `  ( M  /  N ) )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 )  -> 
( ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  ( phi `  ( M  /  N
) )  <->  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) ) )
2 eqeq2 2149 . 2  |-  ( 0  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 )  -> 
( ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  0  <->  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) ) )
3 nndivdvds 11499 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
43biimpa 294 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( M  /  N )  e.  NN )
5 dfphi2 11896 . . . 4  |-  ( ( M  /  N )  e.  NN  ->  ( phi `  ( M  /  N ) )  =  ( `  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } ) )
64, 5syl 14 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( phi `  ( M  /  N
) )  =  ( `  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 } ) )
7 0z 9065 . . . . . 6  |-  0  e.  ZZ
84nnzd 9172 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( M  /  N )  e.  ZZ )
9 fzofig 10205 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  ( M  /  N
)  e.  ZZ )  ->  ( 0..^ ( M  /  N ) )  e.  Fin )
107, 8, 9sylancr 410 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( 0..^ ( M  /  N
) )  e.  Fin )
11 elfzoelz 9924 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  /  N ) )  ->  y  e.  ZZ )
1211adantl 275 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  y  e.  ZZ )
138adantr 274 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  ( M  /  N )  e.  ZZ )
1412, 13gcdcld 11657 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  ( y  gcd  ( M  /  N
) )  e.  NN0 )
1514nn0zd 9171 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  ( y  gcd  ( M  /  N
) )  e.  ZZ )
16 1zzd 9081 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  1  e.  ZZ )
17 zdceq 9126 . . . . . . 7  |-  ( ( ( y  gcd  ( M  /  N ) )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( y  gcd  ( M  /  N ) )  =  1 )
1815, 16, 17syl2anc 408 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  -> DECID  ( y  gcd  ( M  /  N ) )  =  1 )
1918ralrimiva 2505 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  A. y  e.  ( 0..^ ( M  /  N ) )DECID  ( y  gcd  ( M  /  N ) )  =  1 )
2010, 19ssfirab 6822 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 }  e.  Fin )
21 eqid 2139 . . . . . 6  |-  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  =  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
22 eqid 2139 . . . . . 6  |-  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
23 eqid 2139 . . . . . 6  |-  ( z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 }  |->  ( z  x.  N ) )  =  ( z  e.  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) )
2421, 22, 23hashgcdlem 11903 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) ) : { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } -1-1-onto-> { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)
25243expa 1181 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) ) : { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 } -1-1-onto-> { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)
2620, 25fihasheqf1od 10536 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( `  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 } )  =  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } ) )
276, 26eqtr2d 2173 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  ( phi `  ( M  /  N
) ) )
28 simprr 521 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( x  gcd  M )  =  N )
29 elfzoelz 9924 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0..^ M )  ->  x  e.  ZZ )
3029ad2antrl 481 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  x  e.  ZZ )
31 nnz 9073 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  ZZ )
3231ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  M  e.  ZZ )
33 gcddvds 11652 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( x  gcd  M )  ||  x  /\  ( x  gcd  M ) 
||  M ) )
3430, 32, 33syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( (
x  gcd  M )  ||  x  /\  (
x  gcd  M )  ||  M ) )
3534simprd 113 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( x  gcd  M )  ||  M
)
3628, 35eqbrtrrd 3952 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  N  ||  M
)
3736expr 372 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  x  e.  ( 0..^ M ) )  ->  ( ( x  gcd  M )  =  N  ->  N  ||  M
) )
3837con3d 620 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  x  e.  ( 0..^ M ) )  ->  ( -.  N  ||  M  ->  -.  (
x  gcd  M )  =  N ) )
3938impancom 258 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  (
x  e.  ( 0..^ M )  ->  -.  ( x  gcd  M )  =  N ) )
4039ralrimiv 2504 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  A. x  e.  ( 0..^ M )  -.  ( x  gcd  M )  =  N )
41 rabeq0 3392 . . . . 5  |-  ( { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  (/)  <->  A. x  e.  ( 0..^ M )  -.  (
x  gcd  M )  =  N )
4240, 41sylibr 133 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  (/) )
4342fveq2d 5425 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)  =  ( `  (/) ) )
44 hash0 10543 . . 3  |-  ( `  (/) )  =  0
4543, 44syl6eq 2188 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)  =  0 )
46 dvdsdc 11501 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  ZZ )  -> DECID  N 
||  M )
4731, 46sylan2 284 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  -> DECID  N 
||  M )
4847ancoms 266 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  -> DECID  N 
||  M )
491, 2, 27, 45, 48ifbothdadc 3503 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
)  =  if ( N  ||  M , 
( phi `  ( M  /  N ) ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103  DECID wdc 819    = wceq 1331    e. wcel 1480   A.wral 2416   {crab 2420   (/)c0 3363   ifcif 3474   class class class wbr 3929    |-> cmpt 3989   -1-1-onto->wf1o 5122   ` cfv 5123  (class class class)co 5774   Fincfn 6634   0cc0 7620   1c1 7621    x. cmul 7625    / cdiv 8432   NNcn 8720   ZZcz 9054  ..^cfzo 9919  ♯chash 10521    || cdvds 11493    gcd cgcd 11635   phicphi 11886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636  df-phi 11887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator