ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashgcdeq Unicode version

Theorem hashgcdeq 12380
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashgcdeq  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
)  =  if ( N  ||  M , 
( phi `  ( M  /  N ) ) ,  0 ) )
Distinct variable groups:    x, M    x, N

Proof of Theorem hashgcdeq
Dummy variables  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2203 . 2  |-  ( ( phi `  ( M  /  N ) )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 )  -> 
( ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  ( phi `  ( M  /  N
) )  <->  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) ) )
2 eqeq2 2203 . 2  |-  ( 0  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 )  -> 
( ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  0  <->  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) ) )
3 nndivdvds 11942 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
43biimpa 296 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( M  /  N )  e.  NN )
5 dfphi2 12361 . . . 4  |-  ( ( M  /  N )  e.  NN  ->  ( phi `  ( M  /  N ) )  =  ( `  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } ) )
64, 5syl 14 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( phi `  ( M  /  N
) )  =  ( `  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 } ) )
7 0z 9331 . . . . . 6  |-  0  e.  ZZ
84nnzd 9441 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( M  /  N )  e.  ZZ )
9 fzofig 10506 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  ( M  /  N
)  e.  ZZ )  ->  ( 0..^ ( M  /  N ) )  e.  Fin )
107, 8, 9sylancr 414 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( 0..^ ( M  /  N
) )  e.  Fin )
11 elfzoelz 10216 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  /  N ) )  ->  y  e.  ZZ )
1211adantl 277 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  y  e.  ZZ )
138adantr 276 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  ( M  /  N )  e.  ZZ )
1412, 13gcdcld 12108 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  ( y  gcd  ( M  /  N
) )  e.  NN0 )
1514nn0zd 9440 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  ( y  gcd  ( M  /  N
) )  e.  ZZ )
16 1zzd 9347 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  1  e.  ZZ )
17 zdceq 9395 . . . . . . 7  |-  ( ( ( y  gcd  ( M  /  N ) )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( y  gcd  ( M  /  N ) )  =  1 )
1815, 16, 17syl2anc 411 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  -> DECID  ( y  gcd  ( M  /  N ) )  =  1 )
1918ralrimiva 2567 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  A. y  e.  ( 0..^ ( M  /  N ) )DECID  ( y  gcd  ( M  /  N ) )  =  1 )
2010, 19ssfirab 6992 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 }  e.  Fin )
21 eqid 2193 . . . . . 6  |-  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  =  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
22 eqid 2193 . . . . . 6  |-  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
23 eqid 2193 . . . . . 6  |-  ( z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 }  |->  ( z  x.  N ) )  =  ( z  e.  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) )
2421, 22, 23hashgcdlem 12379 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) ) : { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } -1-1-onto-> { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)
25243expa 1205 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) ) : { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 } -1-1-onto-> { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)
2620, 25fihasheqf1od 10863 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( `  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 } )  =  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } ) )
276, 26eqtr2d 2227 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  ( phi `  ( M  /  N
) ) )
28 simprr 531 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( x  gcd  M )  =  N )
29 elfzoelz 10216 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0..^ M )  ->  x  e.  ZZ )
3029ad2antrl 490 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  x  e.  ZZ )
31 nnz 9339 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  ZZ )
3231ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  M  e.  ZZ )
33 gcddvds 12103 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( x  gcd  M )  ||  x  /\  ( x  gcd  M ) 
||  M ) )
3430, 32, 33syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( (
x  gcd  M )  ||  x  /\  (
x  gcd  M )  ||  M ) )
3534simprd 114 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( x  gcd  M )  ||  M
)
3628, 35eqbrtrrd 4054 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  N  ||  M
)
3736expr 375 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  x  e.  ( 0..^ M ) )  ->  ( ( x  gcd  M )  =  N  ->  N  ||  M
) )
3837con3d 632 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  x  e.  ( 0..^ M ) )  ->  ( -.  N  ||  M  ->  -.  (
x  gcd  M )  =  N ) )
3938impancom 260 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  (
x  e.  ( 0..^ M )  ->  -.  ( x  gcd  M )  =  N ) )
4039ralrimiv 2566 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  A. x  e.  ( 0..^ M )  -.  ( x  gcd  M )  =  N )
41 rabeq0 3477 . . . . 5  |-  ( { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  (/)  <->  A. x  e.  ( 0..^ M )  -.  (
x  gcd  M )  =  N )
4240, 41sylibr 134 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  (/) )
4342fveq2d 5559 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)  =  ( `  (/) ) )
44 hash0 10870 . . 3  |-  ( `  (/) )  =  0
4543, 44eqtrdi 2242 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)  =  0 )
46 dvdsdc 11944 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  ZZ )  -> DECID  N 
||  M )
4731, 46sylan2 286 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  -> DECID  N 
||  M )
4847ancoms 268 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  -> DECID  N 
||  M )
491, 2, 27, 45, 48ifbothdadc 3590 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
)  =  if ( N  ||  M , 
( phi `  ( M  /  N ) ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476   (/)c0 3447   ifcif 3558   class class class wbr 4030    |-> cmpt 4091   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   Fincfn 6796   0cc0 7874   1c1 7875    x. cmul 7879    / cdiv 8693   NNcn 8984   ZZcz 9320  ..^cfzo 10211  ♯chash 10849    || cdvds 11933    gcd cgcd 12082   phicphi 12350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083  df-phi 12352
This theorem is referenced by:  phisum  12381
  Copyright terms: Public domain W3C validator