ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashgcdeq Unicode version

Theorem hashgcdeq 12677
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashgcdeq  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
)  =  if ( N  ||  M , 
( phi `  ( M  /  N ) ) ,  0 ) )
Distinct variable groups:    x, M    x, N

Proof of Theorem hashgcdeq
Dummy variables  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2217 . 2  |-  ( ( phi `  ( M  /  N ) )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 )  -> 
( ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  ( phi `  ( M  /  N
) )  <->  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) ) )
2 eqeq2 2217 . 2  |-  ( 0  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 )  -> 
( ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  0  <->  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  if ( N 
||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) ) )
3 nndivdvds 12222 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( N  ||  M  <->  ( M  /  N )  e.  NN ) )
43biimpa 296 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( M  /  N )  e.  NN )
5 dfphi2 12657 . . . 4  |-  ( ( M  /  N )  e.  NN  ->  ( phi `  ( M  /  N ) )  =  ( `  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } ) )
64, 5syl 14 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( phi `  ( M  /  N
) )  =  ( `  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 } ) )
7 0z 9418 . . . . . 6  |-  0  e.  ZZ
84nnzd 9529 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( M  /  N )  e.  ZZ )
9 fzofig 10614 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  ( M  /  N
)  e.  ZZ )  ->  ( 0..^ ( M  /  N ) )  e.  Fin )
107, 8, 9sylancr 414 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( 0..^ ( M  /  N
) )  e.  Fin )
11 elfzoelz 10304 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  /  N ) )  ->  y  e.  ZZ )
1211adantl 277 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  y  e.  ZZ )
138adantr 276 . . . . . . . . 9  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  ( M  /  N )  e.  ZZ )
1412, 13gcdcld 12404 . . . . . . . 8  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  ( y  gcd  ( M  /  N
) )  e.  NN0 )
1514nn0zd 9528 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  ( y  gcd  ( M  /  N
) )  e.  ZZ )
16 1zzd 9434 . . . . . . 7  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  ->  1  e.  ZZ )
17 zdceq 9483 . . . . . . 7  |-  ( ( ( y  gcd  ( M  /  N ) )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( y  gcd  ( M  /  N ) )  =  1 )
1815, 16, 17syl2anc 411 . . . . . 6  |-  ( ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M )  /\  y  e.  ( 0..^ ( M  /  N ) ) )  -> DECID  ( y  gcd  ( M  /  N ) )  =  1 )
1918ralrimiva 2581 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  A. y  e.  ( 0..^ ( M  /  N ) )DECID  ( y  gcd  ( M  /  N ) )  =  1 )
2010, 19ssfirab 7059 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 }  e.  Fin )
21 eqid 2207 . . . . . 6  |-  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  =  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 }
22 eqid 2207 . . . . . 6  |-  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
23 eqid 2207 . . . . . 6  |-  ( z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 }  |->  ( z  x.  N ) )  =  ( z  e.  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) )
2421, 22, 23hashgcdlem 12675 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  (
z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) ) : { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N
) )  =  1 } -1-1-onto-> { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)
25243expa 1206 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( z  e.  { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }  |->  ( z  x.  N ) ) : { y  e.  ( 0..^ ( M  /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 } -1-1-onto-> { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)
2620, 25fihasheqf1od 10971 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( `  {
y  e.  ( 0..^ ( M  /  N
) )  |  ( y  gcd  ( M  /  N ) )  =  1 } )  =  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } ) )
276, 26eqtr2d 2241 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  N  ||  M
)  ->  ( `  {
x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N } )  =  ( phi `  ( M  /  N
) ) )
28 simprr 531 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( x  gcd  M )  =  N )
29 elfzoelz 10304 . . . . . . . . . . . . 13  |-  ( x  e.  ( 0..^ M )  ->  x  e.  ZZ )
3029ad2antrl 490 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  x  e.  ZZ )
31 nnz 9426 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  ZZ )
3231ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  M  e.  ZZ )
33 gcddvds 12399 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( x  gcd  M )  ||  x  /\  ( x  gcd  M ) 
||  M ) )
3430, 32, 33syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( (
x  gcd  M )  ||  x  /\  (
x  gcd  M )  ||  M ) )
3534simprd 114 . . . . . . . . . 10  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  ( x  gcd  M )  ||  M
)
3628, 35eqbrtrrd 4083 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  ( x  e.  ( 0..^ M )  /\  ( x  gcd  M )  =  N ) )  ->  N  ||  M
)
3736expr 375 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  x  e.  ( 0..^ M ) )  ->  ( ( x  gcd  M )  =  N  ->  N  ||  M
) )
3837con3d 632 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  x  e.  ( 0..^ M ) )  ->  ( -.  N  ||  M  ->  -.  (
x  gcd  M )  =  N ) )
3938impancom 260 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  (
x  e.  ( 0..^ M )  ->  -.  ( x  gcd  M )  =  N ) )
4039ralrimiv 2580 . . . . 5  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  A. x  e.  ( 0..^ M )  -.  ( x  gcd  M )  =  N )
41 rabeq0 3498 . . . . 5  |-  ( { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  (/)  <->  A. x  e.  ( 0..^ M )  -.  (
x  gcd  M )  =  N )
4240, 41sylibr 134 . . . 4  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }  =  (/) )
4342fveq2d 5603 . . 3  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)  =  ( `  (/) ) )
44 hash0 10978 . . 3  |-  ( `  (/) )  =  0
4543, 44eqtrdi 2256 . 2  |-  ( ( ( M  e.  NN  /\  N  e.  NN )  /\  -.  N  ||  M )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M
)  =  N }
)  =  0 )
46 dvdsdc 12224 . . . 4  |-  ( ( N  e.  NN  /\  M  e.  ZZ )  -> DECID  N 
||  M )
4731, 46sylan2 286 . . 3  |-  ( ( N  e.  NN  /\  M  e.  NN )  -> DECID  N 
||  M )
4847ancoms 268 . 2  |-  ( ( M  e.  NN  /\  N  e.  NN )  -> DECID  N 
||  M )
491, 2, 27, 45, 48ifbothdadc 3613 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
)  =  if ( N  ||  M , 
( phi `  ( M  /  N ) ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   (/)c0 3468   ifcif 3579   class class class wbr 4059    |-> cmpt 4121   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967   Fincfn 6850   0cc0 7960   1c1 7961    x. cmul 7965    / cdiv 8780   NNcn 9071   ZZcz 9407  ..^cfzo 10299  ♯chash 10957    || cdvds 12213    gcd cgcd 12389   phicphi 12646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-phi 12648
This theorem is referenced by:  phisum  12678
  Copyright terms: Public domain W3C validator