ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeq2dadc Unicode version

Theorem ifeq2dadc 3592
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
ifeq2da.1  |-  ( (
ph  /\  -.  ps )  ->  A  =  B )
ifeq2dadc.dc  |-  ( ph  -> DECID  ps )
Assertion
Ref Expression
ifeq2dadc  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
)

Proof of Theorem ifeq2dadc
StepHypRef Expression
1 simpr 110 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
21iftrued 3568 . . 3  |-  ( (
ph  /\  ps )  ->  if ( ps ,  C ,  A )  =  C )
31iftrued 3568 . . 3  |-  ( (
ph  /\  ps )  ->  if ( ps ,  C ,  B )  =  C )
42, 3eqtr4d 2232 . 2  |-  ( (
ph  /\  ps )  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
)
5 ifeq2da.1 . . 3  |-  ( (
ph  /\  -.  ps )  ->  A  =  B )
65ifeq2d 3579 . 2  |-  ( (
ph  /\  -.  ps )  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
)
7 ifeq2dadc.dc . . 3  |-  ( ph  -> DECID  ps )
8 exmiddc 837 . . 3  |-  (DECID  ps  ->  ( ps  \/  -.  ps ) )
97, 8syl 14 . 2  |-  ( ph  ->  ( ps  \/  -.  ps ) )
104, 6, 9mpjaodan 799 1  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364   ifcif 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-un 3161  df-if 3562
This theorem is referenced by:  subgmulg  13318
  Copyright terms: Public domain W3C validator