| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifeq2dadc | Unicode version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ifeq2da.1 |
|
| ifeq2dadc.dc |
|
| Ref | Expression |
|---|---|
| ifeq2dadc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . 4
| |
| 2 | 1 | iftrued 3586 |
. . 3
|
| 3 | 1 | iftrued 3586 |
. . 3
|
| 4 | 2, 3 | eqtr4d 2243 |
. 2
|
| 5 | ifeq2da.1 |
. . 3
| |
| 6 | 5 | ifeq2d 3598 |
. 2
|
| 7 | ifeq2dadc.dc |
. . 3
| |
| 8 | exmiddc 838 |
. . 3
| |
| 9 | 7, 8 | syl 14 |
. 2
|
| 10 | 4, 6, 9 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-un 3178 df-if 3580 |
| This theorem is referenced by: subgmulg 13639 |
| Copyright terms: Public domain | W3C validator |