| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifeq2dadc | Unicode version | ||
| Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) | 
| Ref | Expression | 
|---|---|
| ifeq2da.1 | 
 | 
| ifeq2dadc.dc | 
 | 
| Ref | Expression | 
|---|---|
| ifeq2dadc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. . . 4
 | |
| 2 | 1 | iftrued 3568 | 
. . 3
 | 
| 3 | 1 | iftrued 3568 | 
. . 3
 | 
| 4 | 2, 3 | eqtr4d 2232 | 
. 2
 | 
| 5 | ifeq2da.1 | 
. . 3
 | |
| 6 | 5 | ifeq2d 3579 | 
. 2
 | 
| 7 | ifeq2dadc.dc | 
. . 3
 | |
| 8 | exmiddc 837 | 
. . 3
 | |
| 9 | 7, 8 | syl 14 | 
. 2
 | 
| 10 | 4, 6, 9 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3562 | 
| This theorem is referenced by: subgmulg 13318 | 
| Copyright terms: Public domain | W3C validator |