ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifeqdadc Unicode version

Theorem ifeqdadc 3635
Description: Separation of the values of the conditional operator. (Contributed by Alexander van der Vekens, 13-Apr-2018.)
Hypotheses
Ref Expression
ifeqda.1  |-  ( (
ph  /\  ps )  ->  A  =  C )
ifeqda.2  |-  ( (
ph  /\  -.  ps )  ->  B  =  C )
ifeqdadc.dc  |-  ( ph  -> DECID  ps )
Assertion
Ref Expression
ifeqdadc  |-  ( ph  ->  if ( ps ,  A ,  B )  =  C )

Proof of Theorem ifeqdadc
StepHypRef Expression
1 iftrue 3607 . . . 4  |-  ( ps 
->  if ( ps ,  A ,  B )  =  A )
21adantl 277 . . 3  |-  ( (
ph  /\  ps )  ->  if ( ps ,  A ,  B )  =  A )
3 ifeqda.1 . . 3  |-  ( (
ph  /\  ps )  ->  A  =  C )
42, 3eqtrd 2262 . 2  |-  ( (
ph  /\  ps )  ->  if ( ps ,  A ,  B )  =  C )
5 iffalse 3610 . . . 4  |-  ( -. 
ps  ->  if ( ps ,  A ,  B
)  =  B )
65adantl 277 . . 3  |-  ( (
ph  /\  -.  ps )  ->  if ( ps ,  A ,  B )  =  B )
7 ifeqda.2 . . 3  |-  ( (
ph  /\  -.  ps )  ->  B  =  C )
86, 7eqtrd 2262 . 2  |-  ( (
ph  /\  -.  ps )  ->  if ( ps ,  A ,  B )  =  C )
9 ifeqdadc.dc . . 3  |-  ( ph  -> DECID  ps )
10 exmiddc 841 . . 3  |-  (DECID  ps  ->  ( ps  \/  -.  ps ) )
119, 10syl 14 . 2  |-  ( ph  ->  ( ps  \/  -.  ps ) )
124, 8, 11mpjaodan 803 1  |-  ( ph  ->  if ( ps ,  A ,  B )  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  ccatsymb  11132  swrdccat3blem  11266
  Copyright terms: Public domain W3C validator