ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatsymb Unicode version

Theorem ccatsymb 11033
Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
Assertion
Ref Expression
ccatsymb  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ZZ )  ->  (
( A ++  B ) `
 I )  =  if ( I  < 
( `  A ) ,  ( A `  I
) ,  ( B `
 ( I  -  ( `  A ) ) ) ) )

Proof of Theorem ccatsymb
StepHypRef Expression
1 simprll 537 . . . . . . . 8  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
2 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  I  <  ( `  A ) )
32anim2i 342 . . . . . . . . 9  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  (
0  <_  I  /\  I  <  ( `  A )
) )
4 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  I  e.  ZZ )
5 0zd 9366 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  0  e.  ZZ )
6 lencl 10973 . . . . . . . . . . . . 13  |-  ( A  e. Word  V  ->  ( `  A )  e.  NN0 )
76nn0zd 9475 . . . . . . . . . . . 12  |-  ( A  e. Word  V  ->  ( `  A )  e.  ZZ )
87ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( `  A )  e.  ZZ )
9 elfzo 10253 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  0  e.  ZZ  /\  ( `  A )  e.  ZZ )  ->  ( I  e.  ( 0..^ ( `  A
) )  <->  ( 0  <_  I  /\  I  <  ( `  A )
) ) )
104, 5, 8, 9syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  e.  ( 0..^ ( `  A
) )  <->  ( 0  <_  I  /\  I  <  ( `  A )
) ) )
1110ad2antrl 490 . . . . . . . . 9  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  (
I  e.  ( 0..^ ( `  A )
)  <->  ( 0  <_  I  /\  I  <  ( `  A ) ) ) )
123, 11mpbird 167 . . . . . . . 8  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  I  e.  ( 0..^ ( `  A
) ) )
13 df-3an 982 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) )  <->  ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ( 0..^ ( `  A
) ) ) )
141, 12, 13sylanbrc 417 . . . . . . 7  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) ) )
15 ccatval1 11028 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) )  -> 
( ( A ++  B
) `  I )  =  ( A `  I ) )
1615eqcomd 2210 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) )  -> 
( A `  I
)  =  ( ( A ++  B ) `  I ) )
1714, 16syl 14 . . . . . 6  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  ( A `  I )  =  ( ( A ++  B ) `  I
) )
1817ancoms 268 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
)  /\  0  <_  I )  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) )
19 0z 9365 . . . . . . . . . . 11  |-  0  e.  ZZ
20 zltnle 9400 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  0  e.  ZZ )  ->  ( I  <  0  <->  -.  0  <_  I )
)
2119, 20mpan2 425 . . . . . . . . . 10  |-  ( I  e.  ZZ  ->  (
I  <  0  <->  -.  0  <_  I ) )
2221adantl 277 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  <  0  <->  -.  0  <_  I ) )
23 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  A  e. Word  V )
2423anim1i 340 . . . . . . . . . . . . 13  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( A  e. Word  V  /\  I  e.  ZZ ) )
2524adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  ( A  e. Word  V  /\  I  e.  ZZ ) )
26 animorrl 827 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
I  <  0  \/  ( `  A )  <_  I ) )
27 wrdsymb0 11001 . . . . . . . . . . . 12  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( ( I  <  0  \/  ( `  A
)  <_  I )  ->  ( A `  I
)  =  (/) ) )
2825, 26, 27sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  ( A `  I )  =  (/) )
29 ccatcl 11024 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
3029anim1i 340 . . . . . . . . . . . . 13  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( A ++  B )  e. Word  V  /\  I  e.  ZZ ) )
3130adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
( A ++  B )  e. Word  V  /\  I  e.  ZZ ) )
32 animorrl 827 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
I  <  0  \/  ( `  ( A ++  B
) )  <_  I
) )
33 wrdsymb0 11001 . . . . . . . . . . . 12  |-  ( ( ( A ++  B )  e. Word  V  /\  I  e.  ZZ )  ->  (
( I  <  0  \/  ( `  ( A ++  B ) )  <_  I )  ->  (
( A ++  B ) `
 I )  =  (/) ) )
3431, 32, 33sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
( A ++  B ) `
 I )  =  (/) )
3528, 34eqtr4d 2240 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  ( A `  I )  =  ( ( A ++  B ) `  I
) )
3635ex 115 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  <  0  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) ) )
3722, 36sylbird 170 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( -.  0  <_  I  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) ) )
3837com12 30 . . . . . . 7  |-  ( -.  0  <_  I  ->  ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  ->  ( A `
 I )  =  ( ( A ++  B
) `  I )
) )
3938adantrd 279 . . . . . 6  |-  ( -.  0  <_  I  ->  ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
)  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) ) )
4039impcom 125 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
)  /\  -.  0  <_  I )  ->  ( A `  I )  =  ( ( A ++  B ) `  I
) )
41 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  I  e.  ZZ )
42 zdcle 9431 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  I  e.  ZZ )  -> DECID  0  <_  I )
4319, 41, 42sylancr 414 . . . . . 6  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  -> DECID  0  <_  I )
44 exmiddc 837 . . . . . 6  |-  (DECID  0  <_  I  ->  ( 0  <_  I  \/  -.  0  <_  I ) )
4543, 44syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  ( 0  <_  I  \/  -.  0  <_  I ) )
4618, 40, 45mpjaodan 799 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) )
47 simprll 537 . . . . . . . 8  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
48 id 19 . . . . . . . . . 10  |-  ( I  <  ( ( `  A
)  +  ( `  B
) )  ->  I  <  ( ( `  A
)  +  ( `  B
) ) )
496nn0red 9331 . . . . . . . . . . . . 13  |-  ( A  e. Word  V  ->  ( `  A )  e.  RR )
50 zre 9358 . . . . . . . . . . . . 13  |-  ( I  e.  ZZ  ->  I  e.  RR )
51 lenlt 8130 . . . . . . . . . . . . 13  |-  ( ( ( `  A )  e.  RR  /\  I  e.  RR )  ->  (
( `  A )  <_  I 
<->  -.  I  <  ( `  A ) ) )
5249, 50, 51syl2an 289 . . . . . . . . . . . 12  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( ( `  A
)  <_  I  <->  -.  I  <  ( `  A )
) )
5352adantlr 477 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( `  A
)  <_  I  <->  -.  I  <  ( `  A )
) )
5453biimpar 297 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( `  A
)  <_  I )
5548, 54anim12ci 339 . . . . . . . . 9  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  (
( `  A )  <_  I  /\  I  <  (
( `  A )  +  ( `  B )
) ) )
56 lencl 10973 . . . . . . . . . . . . . 14  |-  ( B  e. Word  V  ->  ( `  B )  e.  NN0 )
5756nn0zd 9475 . . . . . . . . . . . . 13  |-  ( B  e. Word  V  ->  ( `  B )  e.  ZZ )
58 zaddcl 9394 . . . . . . . . . . . . 13  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  ZZ )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
597, 57, 58syl2an 289 . . . . . . . . . . . 12  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
6059adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
61 elfzo 10253 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  ( ( `  A )  +  ( `  B ) )  e.  ZZ )  ->  (
I  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) )  <-> 
( ( `  A
)  <_  I  /\  I  <  ( ( `  A
)  +  ( `  B
) ) ) ) )
624, 8, 60, 61syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) )  <->  ( ( `  A )  <_  I  /\  I  <  ( ( `  A )  +  ( `  B ) ) ) ) )
6362ad2antrl 490 . . . . . . . . 9  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  (
I  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) )  <-> 
( ( `  A
)  <_  I  /\  I  <  ( ( `  A
)  +  ( `  B
) ) ) ) )
6455, 63mpbird 167 . . . . . . . 8  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )
65 df-3an 982 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )  <-> 
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) ) ) )
6647, 64, 65sylanbrc 417 . . . . . . 7  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) ) )
67 ccatval2 11029 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )  ->  ( ( A ++  B ) `  I
)  =  ( B `
 ( I  -  ( `  A ) ) ) )
6867eqcomd 2210 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) )
6966, 68syl 14 . . . . . 6  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) )
7069ancoms 268 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  /\  I  <  ( ( `  A )  +  ( `  B )
) )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) )
7156nn0red 9331 . . . . . . . . . . 11  |-  ( B  e. Word  V  ->  ( `  B )  e.  RR )
72 readdcl 8033 . . . . . . . . . . 11  |-  ( ( ( `  A )  e.  RR  /\  ( `  B
)  e.  RR )  ->  ( ( `  A
)  +  ( `  B
) )  e.  RR )
7349, 71, 72syl2an 289 . . . . . . . . . 10  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  +  ( `  B
) )  e.  RR )
74 lenlt 8130 . . . . . . . . . 10  |-  ( ( ( ( `  A
)  +  ( `  B
) )  e.  RR  /\  I  e.  RR )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I 
<->  -.  I  <  (
( `  A )  +  ( `  B )
) ) )
7573, 50, 74syl2an 289 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I 
<->  -.  I  <  (
( `  A )  +  ( `  B )
) ) )
76 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  B  e. Word  V
)
77 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  I  e.  ZZ )
787adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( `  A )  e.  ZZ )
7977, 78zsubcld 9482 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( I  -  ( `  A ) )  e.  ZZ )
8079adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  -  ( `  A ) )  e.  ZZ )
8176, 80jca 306 . . . . . . . . . . . . 13  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( B  e. Word  V  /\  ( I  -  ( `  A ) )  e.  ZZ ) )
8281adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( B  e. Word  V  /\  ( I  -  ( `  A ) )  e.  ZZ ) )
8349ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( `  A )  e.  RR )
8471ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( `  B )  e.  RR )
8550adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  I  e.  RR )
8683, 84, 85leaddsub2d 8602 . . . . . . . . . . . . . 14  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I 
<->  ( `  B )  <_  ( I  -  ( `  A ) ) ) )
8786biimpa 296 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( `  B )  <_  ( I  -  ( `  A ) ) )
8887olcd 735 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( I  -  ( `  A ) )  <  0  \/  ( `  B )  <_  (
I  -  ( `  A
) ) ) )
89 wrdsymb0 11001 . . . . . . . . . . . 12  |-  ( ( B  e. Word  V  /\  ( I  -  ( `  A ) )  e.  ZZ )  ->  (
( ( I  -  ( `  A ) )  <  0  \/  ( `  B )  <_  (
I  -  ( `  A
) ) )  -> 
( B `  (
I  -  ( `  A
) ) )  =  (/) ) )
9082, 88, 89sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( B `  (
I  -  ( `  A
) ) )  =  (/) )
9130adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( A ++  B
)  e. Word  V  /\  I  e.  ZZ )
)
92 ccatlen 11026 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
9392ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
94 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( `  A
)  +  ( `  B
) )  <_  I
)
9593, 94eqbrtrd 4065 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( `  ( A ++  B ) )  <_  I )
9695olcd 735 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( I  <  0  \/  ( `  ( A ++  B ) )  <_  I ) )
9791, 96, 33sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( A ++  B
) `  I )  =  (/) )
9890, 97eqtr4d 2240 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( B `  (
I  -  ( `  A
) ) )  =  ( ( A ++  B
) `  I )
)
9998ex 115 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) ) )
10075, 99sylbird 170 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( -.  I  <  ( ( `  A
)  +  ( `  B
) )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) ) )
101100com12 30 . . . . . . 7  |-  ( -.  I  <  ( ( `  A )  +  ( `  B ) )  -> 
( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) ) )
102101adantrd 279 . . . . . 6  |-  ( -.  I  <  ( ( `  A )  +  ( `  B ) )  -> 
( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  < 
( `  A ) )  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) ) )
103102impcom 125 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  /\  -.  I  <  ( ( `  A
)  +  ( `  B
) ) )  -> 
( B `  (
I  -  ( `  A
) ) )  =  ( ( A ++  B
) `  I )
)
104 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  I  e.  ZZ )
10560adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( ( `  A )  +  ( `  B ) )  e.  ZZ )
106 zdclt 9432 . . . . . . 7  |-  ( ( I  e.  ZZ  /\  ( ( `  A )  +  ( `  B )
)  e.  ZZ )  -> DECID 
I  <  ( ( `  A )  +  ( `  B ) ) )
107104, 105, 106syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  -> DECID  I  <  ( ( `  A )  +  ( `  B ) ) )
108 exmiddc 837 . . . . . 6  |-  (DECID  I  < 
( ( `  A
)  +  ( `  B
) )  ->  (
I  <  ( ( `  A )  +  ( `  B ) )  \/ 
-.  I  <  (
( `  A )  +  ( `  B )
) ) )
109107, 108syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( I  <  ( ( `  A
)  +  ( `  B
) )  \/  -.  I  <  ( ( `  A
)  +  ( `  B
) ) ) )
11070, 103, 109mpjaodan 799 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) )
111 zdclt 9432 . . . . 5  |-  ( ( I  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  I  <  ( `  A
) )
1124, 8, 111syl2anc 411 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  -> DECID 
I  <  ( `  A
) )
11346, 110, 112ifeqdadc 3602 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  if ( I  <  ( `  A ) ,  ( A `  I ) ,  ( B `  ( I  -  ( `  A
) ) ) )  =  ( ( A ++  B ) `  I
) )
114113eqcomd 2210 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( A ++  B ) `  I
)  =  if ( I  <  ( `  A
) ,  ( A `
 I ) ,  ( B `  (
I  -  ( `  A
) ) ) ) )
1151143impa 1196 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ZZ )  ->  (
( A ++  B ) `
 I )  =  if ( I  < 
( `  A ) ,  ( A `  I
) ,  ( B `
 ( I  -  ( `  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1372    e. wcel 2175   (/)c0 3459   ifcif 3570   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   RRcr 7906   0cc0 7907    + caddc 7910    < clt 8089    <_ cle 8090    - cmin 8225   ZZcz 9354  ..^cfzo 10246  ♯chash 10901  Word cword 10969   ++ cconcat 11021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-fzo 10247  df-ihash 10902  df-word 10970  df-concat 11022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator