ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatsymb Unicode version

Theorem ccatsymb 11132
Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
Assertion
Ref Expression
ccatsymb  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ZZ )  ->  (
( A ++  B ) `
 I )  =  if ( I  < 
( `  A ) ,  ( A `  I
) ,  ( B `
 ( I  -  ( `  A ) ) ) ) )

Proof of Theorem ccatsymb
StepHypRef Expression
1 simprll 537 . . . . . . . 8  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
2 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  I  <  ( `  A ) )
32anim2i 342 . . . . . . . . 9  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  (
0  <_  I  /\  I  <  ( `  A )
) )
4 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  I  e.  ZZ )
5 0zd 9454 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  0  e.  ZZ )
6 lencl 11070 . . . . . . . . . . . . 13  |-  ( A  e. Word  V  ->  ( `  A )  e.  NN0 )
76nn0zd 9563 . . . . . . . . . . . 12  |-  ( A  e. Word  V  ->  ( `  A )  e.  ZZ )
87ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( `  A )  e.  ZZ )
9 elfzo 10341 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  0  e.  ZZ  /\  ( `  A )  e.  ZZ )  ->  ( I  e.  ( 0..^ ( `  A
) )  <->  ( 0  <_  I  /\  I  <  ( `  A )
) ) )
104, 5, 8, 9syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  e.  ( 0..^ ( `  A
) )  <->  ( 0  <_  I  /\  I  <  ( `  A )
) ) )
1110ad2antrl 490 . . . . . . . . 9  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  (
I  e.  ( 0..^ ( `  A )
)  <->  ( 0  <_  I  /\  I  <  ( `  A ) ) ) )
123, 11mpbird 167 . . . . . . . 8  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  I  e.  ( 0..^ ( `  A
) ) )
13 df-3an 1004 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) )  <->  ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ( 0..^ ( `  A
) ) ) )
141, 12, 13sylanbrc 417 . . . . . . 7  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) ) )
15 ccatval1 11127 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) )  -> 
( ( A ++  B
) `  I )  =  ( A `  I ) )
1615eqcomd 2235 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) )  -> 
( A `  I
)  =  ( ( A ++  B ) `  I ) )
1714, 16syl 14 . . . . . 6  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  ( A `  I )  =  ( ( A ++  B ) `  I
) )
1817ancoms 268 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
)  /\  0  <_  I )  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) )
19 0z 9453 . . . . . . . . . . 11  |-  0  e.  ZZ
20 zltnle 9488 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  0  e.  ZZ )  ->  ( I  <  0  <->  -.  0  <_  I )
)
2119, 20mpan2 425 . . . . . . . . . 10  |-  ( I  e.  ZZ  ->  (
I  <  0  <->  -.  0  <_  I ) )
2221adantl 277 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  <  0  <->  -.  0  <_  I ) )
23 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  A  e. Word  V )
2423anim1i 340 . . . . . . . . . . . . 13  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( A  e. Word  V  /\  I  e.  ZZ ) )
2524adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  ( A  e. Word  V  /\  I  e.  ZZ ) )
26 animorrl 831 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
I  <  0  \/  ( `  A )  <_  I ) )
27 wrdsymb0 11099 . . . . . . . . . . . 12  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( ( I  <  0  \/  ( `  A
)  <_  I )  ->  ( A `  I
)  =  (/) ) )
2825, 26, 27sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  ( A `  I )  =  (/) )
29 ccatcl 11123 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
3029anim1i 340 . . . . . . . . . . . . 13  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( A ++  B )  e. Word  V  /\  I  e.  ZZ ) )
3130adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
( A ++  B )  e. Word  V  /\  I  e.  ZZ ) )
32 animorrl 831 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
I  <  0  \/  ( `  ( A ++  B
) )  <_  I
) )
33 wrdsymb0 11099 . . . . . . . . . . . 12  |-  ( ( ( A ++  B )  e. Word  V  /\  I  e.  ZZ )  ->  (
( I  <  0  \/  ( `  ( A ++  B ) )  <_  I )  ->  (
( A ++  B ) `
 I )  =  (/) ) )
3431, 32, 33sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
( A ++  B ) `
 I )  =  (/) )
3528, 34eqtr4d 2265 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  ( A `  I )  =  ( ( A ++  B ) `  I
) )
3635ex 115 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  <  0  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) ) )
3722, 36sylbird 170 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( -.  0  <_  I  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) ) )
3837com12 30 . . . . . . 7  |-  ( -.  0  <_  I  ->  ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  ->  ( A `
 I )  =  ( ( A ++  B
) `  I )
) )
3938adantrd 279 . . . . . 6  |-  ( -.  0  <_  I  ->  ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
)  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) ) )
4039impcom 125 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
)  /\  -.  0  <_  I )  ->  ( A `  I )  =  ( ( A ++  B ) `  I
) )
41 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  I  e.  ZZ )
42 zdcle 9519 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  I  e.  ZZ )  -> DECID  0  <_  I )
4319, 41, 42sylancr 414 . . . . . 6  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  -> DECID  0  <_  I )
44 exmiddc 841 . . . . . 6  |-  (DECID  0  <_  I  ->  ( 0  <_  I  \/  -.  0  <_  I ) )
4543, 44syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  ( 0  <_  I  \/  -.  0  <_  I ) )
4618, 40, 45mpjaodan 803 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) )
47 simprll 537 . . . . . . . 8  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
48 id 19 . . . . . . . . . 10  |-  ( I  <  ( ( `  A
)  +  ( `  B
) )  ->  I  <  ( ( `  A
)  +  ( `  B
) ) )
496nn0red 9419 . . . . . . . . . . . . 13  |-  ( A  e. Word  V  ->  ( `  A )  e.  RR )
50 zre 9446 . . . . . . . . . . . . 13  |-  ( I  e.  ZZ  ->  I  e.  RR )
51 lenlt 8218 . . . . . . . . . . . . 13  |-  ( ( ( `  A )  e.  RR  /\  I  e.  RR )  ->  (
( `  A )  <_  I 
<->  -.  I  <  ( `  A ) ) )
5249, 50, 51syl2an 289 . . . . . . . . . . . 12  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( ( `  A
)  <_  I  <->  -.  I  <  ( `  A )
) )
5352adantlr 477 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( `  A
)  <_  I  <->  -.  I  <  ( `  A )
) )
5453biimpar 297 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( `  A
)  <_  I )
5548, 54anim12ci 339 . . . . . . . . 9  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  (
( `  A )  <_  I  /\  I  <  (
( `  A )  +  ( `  B )
) ) )
56 lencl 11070 . . . . . . . . . . . . . 14  |-  ( B  e. Word  V  ->  ( `  B )  e.  NN0 )
5756nn0zd 9563 . . . . . . . . . . . . 13  |-  ( B  e. Word  V  ->  ( `  B )  e.  ZZ )
58 zaddcl 9482 . . . . . . . . . . . . 13  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  ZZ )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
597, 57, 58syl2an 289 . . . . . . . . . . . 12  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
6059adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
61 elfzo 10341 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  ( ( `  A )  +  ( `  B ) )  e.  ZZ )  ->  (
I  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) )  <-> 
( ( `  A
)  <_  I  /\  I  <  ( ( `  A
)  +  ( `  B
) ) ) ) )
624, 8, 60, 61syl3anc 1271 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) )  <->  ( ( `  A )  <_  I  /\  I  <  ( ( `  A )  +  ( `  B ) ) ) ) )
6362ad2antrl 490 . . . . . . . . 9  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  (
I  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) )  <-> 
( ( `  A
)  <_  I  /\  I  <  ( ( `  A
)  +  ( `  B
) ) ) ) )
6455, 63mpbird 167 . . . . . . . 8  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )
65 df-3an 1004 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )  <-> 
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) ) ) )
6647, 64, 65sylanbrc 417 . . . . . . 7  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) ) )
67 ccatval2 11128 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )  ->  ( ( A ++  B ) `  I
)  =  ( B `
 ( I  -  ( `  A ) ) ) )
6867eqcomd 2235 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) )
6966, 68syl 14 . . . . . 6  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) )
7069ancoms 268 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  /\  I  <  ( ( `  A )  +  ( `  B )
) )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) )
7156nn0red 9419 . . . . . . . . . . 11  |-  ( B  e. Word  V  ->  ( `  B )  e.  RR )
72 readdcl 8121 . . . . . . . . . . 11  |-  ( ( ( `  A )  e.  RR  /\  ( `  B
)  e.  RR )  ->  ( ( `  A
)  +  ( `  B
) )  e.  RR )
7349, 71, 72syl2an 289 . . . . . . . . . 10  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  +  ( `  B
) )  e.  RR )
74 lenlt 8218 . . . . . . . . . 10  |-  ( ( ( ( `  A
)  +  ( `  B
) )  e.  RR  /\  I  e.  RR )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I 
<->  -.  I  <  (
( `  A )  +  ( `  B )
) ) )
7573, 50, 74syl2an 289 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I 
<->  -.  I  <  (
( `  A )  +  ( `  B )
) ) )
76 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  B  e. Word  V
)
77 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  I  e.  ZZ )
787adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( `  A )  e.  ZZ )
7977, 78zsubcld 9570 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( I  -  ( `  A ) )  e.  ZZ )
8079adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  -  ( `  A ) )  e.  ZZ )
8176, 80jca 306 . . . . . . . . . . . . 13  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( B  e. Word  V  /\  ( I  -  ( `  A ) )  e.  ZZ ) )
8281adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( B  e. Word  V  /\  ( I  -  ( `  A ) )  e.  ZZ ) )
8349ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( `  A )  e.  RR )
8471ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( `  B )  e.  RR )
8550adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  I  e.  RR )
8683, 84, 85leaddsub2d 8690 . . . . . . . . . . . . . 14  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I 
<->  ( `  B )  <_  ( I  -  ( `  A ) ) ) )
8786biimpa 296 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( `  B )  <_  ( I  -  ( `  A ) ) )
8887olcd 739 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( I  -  ( `  A ) )  <  0  \/  ( `  B )  <_  (
I  -  ( `  A
) ) ) )
89 wrdsymb0 11099 . . . . . . . . . . . 12  |-  ( ( B  e. Word  V  /\  ( I  -  ( `  A ) )  e.  ZZ )  ->  (
( ( I  -  ( `  A ) )  <  0  \/  ( `  B )  <_  (
I  -  ( `  A
) ) )  -> 
( B `  (
I  -  ( `  A
) ) )  =  (/) ) )
9082, 88, 89sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( B `  (
I  -  ( `  A
) ) )  =  (/) )
9130adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( A ++  B
)  e. Word  V  /\  I  e.  ZZ )
)
92 ccatlen 11125 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
9392ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
94 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( `  A
)  +  ( `  B
) )  <_  I
)
9593, 94eqbrtrd 4104 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( `  ( A ++  B ) )  <_  I )
9695olcd 739 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( I  <  0  \/  ( `  ( A ++  B ) )  <_  I ) )
9791, 96, 33sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( A ++  B
) `  I )  =  (/) )
9890, 97eqtr4d 2265 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( B `  (
I  -  ( `  A
) ) )  =  ( ( A ++  B
) `  I )
)
9998ex 115 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) ) )
10075, 99sylbird 170 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( -.  I  <  ( ( `  A
)  +  ( `  B
) )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) ) )
101100com12 30 . . . . . . 7  |-  ( -.  I  <  ( ( `  A )  +  ( `  B ) )  -> 
( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) ) )
102101adantrd 279 . . . . . 6  |-  ( -.  I  <  ( ( `  A )  +  ( `  B ) )  -> 
( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  < 
( `  A ) )  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) ) )
103102impcom 125 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  /\  -.  I  <  ( ( `  A
)  +  ( `  B
) ) )  -> 
( B `  (
I  -  ( `  A
) ) )  =  ( ( A ++  B
) `  I )
)
104 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  I  e.  ZZ )
10560adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( ( `  A )  +  ( `  B ) )  e.  ZZ )
106 zdclt 9520 . . . . . . 7  |-  ( ( I  e.  ZZ  /\  ( ( `  A )  +  ( `  B )
)  e.  ZZ )  -> DECID 
I  <  ( ( `  A )  +  ( `  B ) ) )
107104, 105, 106syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  -> DECID  I  <  ( ( `  A )  +  ( `  B ) ) )
108 exmiddc 841 . . . . . 6  |-  (DECID  I  < 
( ( `  A
)  +  ( `  B
) )  ->  (
I  <  ( ( `  A )  +  ( `  B ) )  \/ 
-.  I  <  (
( `  A )  +  ( `  B )
) ) )
109107, 108syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( I  <  ( ( `  A
)  +  ( `  B
) )  \/  -.  I  <  ( ( `  A
)  +  ( `  B
) ) ) )
11070, 103, 109mpjaodan 803 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) )
111 zdclt 9520 . . . . 5  |-  ( ( I  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  I  <  ( `  A
) )
1124, 8, 111syl2anc 411 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  -> DECID 
I  <  ( `  A
) )
11346, 110, 112ifeqdadc 3635 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  if ( I  <  ( `  A ) ,  ( A `  I ) ,  ( B `  ( I  -  ( `  A
) ) ) )  =  ( ( A ++  B ) `  I
) )
114113eqcomd 2235 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( A ++  B ) `  I
)  =  if ( I  <  ( `  A
) ,  ( A `
 I ) ,  ( B `  (
I  -  ( `  A
) ) ) ) )
1151143impa 1218 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ZZ )  ->  (
( A ++  B ) `
 I )  =  if ( I  < 
( `  A ) ,  ( A `  I
) ,  ( B `
 ( I  -  ( `  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   (/)c0 3491   ifcif 3602   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   RRcr 7994   0cc0 7995    + caddc 7998    < clt 8177    <_ cle 8178    - cmin 8313   ZZcz 9442  ..^cfzo 10334  ♯chash 10992  Word cword 11066   ++ cconcat 11120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121
This theorem is referenced by:  swrdccatin2  11256
  Copyright terms: Public domain W3C validator