ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatsymb Unicode version

Theorem ccatsymb 11081
Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
Assertion
Ref Expression
ccatsymb  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ZZ )  ->  (
( A ++  B ) `
 I )  =  if ( I  < 
( `  A ) ,  ( A `  I
) ,  ( B `
 ( I  -  ( `  A ) ) ) ) )

Proof of Theorem ccatsymb
StepHypRef Expression
1 simprll 537 . . . . . . . 8  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
2 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  I  <  ( `  A ) )
32anim2i 342 . . . . . . . . 9  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  (
0  <_  I  /\  I  <  ( `  A )
) )
4 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  I  e.  ZZ )
5 0zd 9404 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  0  e.  ZZ )
6 lencl 11020 . . . . . . . . . . . . 13  |-  ( A  e. Word  V  ->  ( `  A )  e.  NN0 )
76nn0zd 9513 . . . . . . . . . . . 12  |-  ( A  e. Word  V  ->  ( `  A )  e.  ZZ )
87ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( `  A )  e.  ZZ )
9 elfzo 10291 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  0  e.  ZZ  /\  ( `  A )  e.  ZZ )  ->  ( I  e.  ( 0..^ ( `  A
) )  <->  ( 0  <_  I  /\  I  <  ( `  A )
) ) )
104, 5, 8, 9syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  e.  ( 0..^ ( `  A
) )  <->  ( 0  <_  I  /\  I  <  ( `  A )
) ) )
1110ad2antrl 490 . . . . . . . . 9  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  (
I  e.  ( 0..^ ( `  A )
)  <->  ( 0  <_  I  /\  I  <  ( `  A ) ) ) )
123, 11mpbird 167 . . . . . . . 8  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  I  e.  ( 0..^ ( `  A
) ) )
13 df-3an 983 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) )  <->  ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ( 0..^ ( `  A
) ) ) )
141, 12, 13sylanbrc 417 . . . . . . 7  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) ) )
15 ccatval1 11076 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) )  -> 
( ( A ++  B
) `  I )  =  ( A `  I ) )
1615eqcomd 2212 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( 0..^ ( `  A
) ) )  -> 
( A `  I
)  =  ( ( A ++  B ) `  I ) )
1714, 16syl 14 . . . . . 6  |-  ( ( 0  <_  I  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
) )  ->  ( A `  I )  =  ( ( A ++  B ) `  I
) )
1817ancoms 268 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
)  /\  0  <_  I )  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) )
19 0z 9403 . . . . . . . . . . 11  |-  0  e.  ZZ
20 zltnle 9438 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  0  e.  ZZ )  ->  ( I  <  0  <->  -.  0  <_  I )
)
2119, 20mpan2 425 . . . . . . . . . 10  |-  ( I  e.  ZZ  ->  (
I  <  0  <->  -.  0  <_  I ) )
2221adantl 277 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  <  0  <->  -.  0  <_  I ) )
23 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  A  e. Word  V )
2423anim1i 340 . . . . . . . . . . . . 13  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( A  e. Word  V  /\  I  e.  ZZ ) )
2524adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  ( A  e. Word  V  /\  I  e.  ZZ ) )
26 animorrl 828 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
I  <  0  \/  ( `  A )  <_  I ) )
27 wrdsymb0 11048 . . . . . . . . . . . 12  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( ( I  <  0  \/  ( `  A
)  <_  I )  ->  ( A `  I
)  =  (/) ) )
2825, 26, 27sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  ( A `  I )  =  (/) )
29 ccatcl 11072 . . . . . . . . . . . . . 14  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( A ++  B )  e. Word  V )
3029anim1i 340 . . . . . . . . . . . . 13  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( A ++  B )  e. Word  V  /\  I  e.  ZZ ) )
3130adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
( A ++  B )  e. Word  V  /\  I  e.  ZZ ) )
32 animorrl 828 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
I  <  0  \/  ( `  ( A ++  B
) )  <_  I
) )
33 wrdsymb0 11048 . . . . . . . . . . . 12  |-  ( ( ( A ++  B )  e. Word  V  /\  I  e.  ZZ )  ->  (
( I  <  0  \/  ( `  ( A ++  B ) )  <_  I )  ->  (
( A ++  B ) `
 I )  =  (/) ) )
3431, 32, 33sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  (
( A ++  B ) `
 I )  =  (/) )
3528, 34eqtr4d 2242 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  <  0 )  ->  ( A `  I )  =  ( ( A ++  B ) `  I
) )
3635ex 115 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  <  0  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) ) )
3722, 36sylbird 170 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( -.  0  <_  I  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) ) )
3837com12 30 . . . . . . 7  |-  ( -.  0  <_  I  ->  ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  ->  ( A `
 I )  =  ( ( A ++  B
) `  I )
) )
3938adantrd 279 . . . . . 6  |-  ( -.  0  <_  I  ->  ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
)  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) ) )
4039impcom 125 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  I  <  ( `  A )
)  /\  -.  0  <_  I )  ->  ( A `  I )  =  ( ( A ++  B ) `  I
) )
41 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  I  e.  ZZ )
42 zdcle 9469 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  I  e.  ZZ )  -> DECID  0  <_  I )
4319, 41, 42sylancr 414 . . . . . 6  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  -> DECID  0  <_  I )
44 exmiddc 838 . . . . . 6  |-  (DECID  0  <_  I  ->  ( 0  <_  I  \/  -.  0  <_  I ) )
4543, 44syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  ( 0  <_  I  \/  -.  0  <_  I ) )
4618, 40, 45mpjaodan 800 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  I  < 
( `  A ) )  ->  ( A `  I )  =  ( ( A ++  B ) `
 I ) )
47 simprll 537 . . . . . . . 8  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V ) )
48 id 19 . . . . . . . . . 10  |-  ( I  <  ( ( `  A
)  +  ( `  B
) )  ->  I  <  ( ( `  A
)  +  ( `  B
) ) )
496nn0red 9369 . . . . . . . . . . . . 13  |-  ( A  e. Word  V  ->  ( `  A )  e.  RR )
50 zre 9396 . . . . . . . . . . . . 13  |-  ( I  e.  ZZ  ->  I  e.  RR )
51 lenlt 8168 . . . . . . . . . . . . 13  |-  ( ( ( `  A )  e.  RR  /\  I  e.  RR )  ->  (
( `  A )  <_  I 
<->  -.  I  <  ( `  A ) ) )
5249, 50, 51syl2an 289 . . . . . . . . . . . 12  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( ( `  A
)  <_  I  <->  -.  I  <  ( `  A )
) )
5352adantlr 477 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( `  A
)  <_  I  <->  -.  I  <  ( `  A )
) )
5453biimpar 297 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( `  A
)  <_  I )
5548, 54anim12ci 339 . . . . . . . . 9  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  (
( `  A )  <_  I  /\  I  <  (
( `  A )  +  ( `  B )
) ) )
56 lencl 11020 . . . . . . . . . . . . . 14  |-  ( B  e. Word  V  ->  ( `  B )  e.  NN0 )
5756nn0zd 9513 . . . . . . . . . . . . 13  |-  ( B  e. Word  V  ->  ( `  B )  e.  ZZ )
58 zaddcl 9432 . . . . . . . . . . . . 13  |-  ( ( ( `  A )  e.  ZZ  /\  ( `  B
)  e.  ZZ )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
597, 57, 58syl2an 289 . . . . . . . . . . . 12  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
6059adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( `  A
)  +  ( `  B
) )  e.  ZZ )
61 elfzo 10291 . . . . . . . . . . 11  |-  ( ( I  e.  ZZ  /\  ( `  A )  e.  ZZ  /\  ( ( `  A )  +  ( `  B ) )  e.  ZZ )  ->  (
I  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) )  <-> 
( ( `  A
)  <_  I  /\  I  <  ( ( `  A
)  +  ( `  B
) ) ) ) )
624, 8, 60, 61syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) )  <->  ( ( `  A )  <_  I  /\  I  <  ( ( `  A )  +  ( `  B ) ) ) ) )
6362ad2antrl 490 . . . . . . . . 9  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  (
I  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B ) ) )  <-> 
( ( `  A
)  <_  I  /\  I  <  ( ( `  A
)  +  ( `  B
) ) ) ) )
6455, 63mpbird 167 . . . . . . . 8  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )
65 df-3an 983 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )  <-> 
( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ( ( `  A )..^ ( ( `  A )  +  ( `  B )
) ) ) )
6647, 64, 65sylanbrc 417 . . . . . . 7  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) ) )
67 ccatval2 11077 . . . . . . . 8  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )  ->  ( ( A ++  B ) `  I
)  =  ( B `
 ( I  -  ( `  A ) ) ) )
6867eqcomd 2212 . . . . . . 7  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ( ( `  A
)..^ ( ( `  A
)  +  ( `  B
) ) ) )  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) )
6966, 68syl 14 . . . . . 6  |-  ( ( I  <  ( ( `  A )  +  ( `  B ) )  /\  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
) )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) )
7069ancoms 268 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  /\  I  <  ( ( `  A )  +  ( `  B )
) )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) )
7156nn0red 9369 . . . . . . . . . . 11  |-  ( B  e. Word  V  ->  ( `  B )  e.  RR )
72 readdcl 8071 . . . . . . . . . . 11  |-  ( ( ( `  A )  e.  RR  /\  ( `  B
)  e.  RR )  ->  ( ( `  A
)  +  ( `  B
) )  e.  RR )
7349, 71, 72syl2an 289 . . . . . . . . . 10  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( ( `  A
)  +  ( `  B
) )  e.  RR )
74 lenlt 8168 . . . . . . . . . 10  |-  ( ( ( ( `  A
)  +  ( `  B
) )  e.  RR  /\  I  e.  RR )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I 
<->  -.  I  <  (
( `  A )  +  ( `  B )
) ) )
7573, 50, 74syl2an 289 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I 
<->  -.  I  <  (
( `  A )  +  ( `  B )
) ) )
76 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  B  e. Word  V
)
77 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  I  e.  ZZ )
787adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( `  A )  e.  ZZ )
7977, 78zsubcld 9520 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  I  e.  ZZ )  ->  ( I  -  ( `  A ) )  e.  ZZ )
8079adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( I  -  ( `  A ) )  e.  ZZ )
8176, 80jca 306 . . . . . . . . . . . . 13  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( B  e. Word  V  /\  ( I  -  ( `  A ) )  e.  ZZ ) )
8281adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( B  e. Word  V  /\  ( I  -  ( `  A ) )  e.  ZZ ) )
8349ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( `  A )  e.  RR )
8471ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( `  B )  e.  RR )
8550adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  I  e.  RR )
8683, 84, 85leaddsub2d 8640 . . . . . . . . . . . . . 14  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I 
<->  ( `  B )  <_  ( I  -  ( `  A ) ) ) )
8786biimpa 296 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( `  B )  <_  ( I  -  ( `  A ) ) )
8887olcd 736 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( I  -  ( `  A ) )  <  0  \/  ( `  B )  <_  (
I  -  ( `  A
) ) ) )
89 wrdsymb0 11048 . . . . . . . . . . . 12  |-  ( ( B  e. Word  V  /\  ( I  -  ( `  A ) )  e.  ZZ )  ->  (
( ( I  -  ( `  A ) )  <  0  \/  ( `  B )  <_  (
I  -  ( `  A
) ) )  -> 
( B `  (
I  -  ( `  A
) ) )  =  (/) ) )
9082, 88, 89sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( B `  (
I  -  ( `  A
) ) )  =  (/) )
9130adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( A ++  B
)  e. Word  V  /\  I  e.  ZZ )
)
92 ccatlen 11074 . . . . . . . . . . . . . . 15  |-  ( ( A  e. Word  V  /\  B  e. Word  V )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
9392ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( `  ( A ++  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
94 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( `  A
)  +  ( `  B
) )  <_  I
)
9593, 94eqbrtrd 4073 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( `  ( A ++  B ) )  <_  I )
9695olcd 736 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( I  <  0  \/  ( `  ( A ++  B ) )  <_  I ) )
9791, 96, 33sylc 62 . . . . . . . . . . 11  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( ( A ++  B
) `  I )  =  (/) )
9890, 97eqtr4d 2242 . . . . . . . . . 10  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  (
( `  A )  +  ( `  B )
)  <_  I )  ->  ( B `  (
I  -  ( `  A
) ) )  =  ( ( A ++  B
) `  I )
)
9998ex 115 . . . . . . . . 9  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( ( `  A )  +  ( `  B ) )  <_  I  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) ) )
10075, 99sylbird 170 . . . . . . . 8  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( -.  I  <  ( ( `  A
)  +  ( `  B
) )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) ) )
101100com12 30 . . . . . . 7  |-  ( -.  I  <  ( ( `  A )  +  ( `  B ) )  -> 
( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( B `  ( I  -  ( `  A )
) )  =  ( ( A ++  B ) `
 I ) ) )
102101adantrd 279 . . . . . 6  |-  ( -.  I  <  ( ( `  A )  +  ( `  B ) )  -> 
( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  < 
( `  A ) )  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) ) )
103102impcom 125 . . . . 5  |-  ( ( ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  /\  -.  I  <  ( ( `  A
)  +  ( `  B
) ) )  -> 
( B `  (
I  -  ( `  A
) ) )  =  ( ( A ++  B
) `  I )
)
104 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  I  e.  ZZ )
10560adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( ( `  A )  +  ( `  B ) )  e.  ZZ )
106 zdclt 9470 . . . . . . 7  |-  ( ( I  e.  ZZ  /\  ( ( `  A )  +  ( `  B )
)  e.  ZZ )  -> DECID 
I  <  ( ( `  A )  +  ( `  B ) ) )
107104, 105, 106syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  -> DECID  I  <  ( ( `  A )  +  ( `  B ) ) )
108 exmiddc 838 . . . . . 6  |-  (DECID  I  < 
( ( `  A
)  +  ( `  B
) )  ->  (
I  <  ( ( `  A )  +  ( `  B ) )  \/ 
-.  I  <  (
( `  A )  +  ( `  B )
) ) )
109107, 108syl 14 . . . . 5  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( I  <  ( ( `  A
)  +  ( `  B
) )  \/  -.  I  <  ( ( `  A
)  +  ( `  B
) ) ) )
11070, 103, 109mpjaodan 800 . . . 4  |-  ( ( ( ( A  e. Word  V  /\  B  e. Word  V
)  /\  I  e.  ZZ )  /\  -.  I  <  ( `  A )
)  ->  ( B `  ( I  -  ( `  A ) ) )  =  ( ( A ++  B ) `  I
) )
111 zdclt 9470 . . . . 5  |-  ( ( I  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  I  <  ( `  A
) )
1124, 8, 111syl2anc 411 . . . 4  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  -> DECID 
I  <  ( `  A
) )
11346, 110, 112ifeqdadc 3608 . . 3  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  if ( I  <  ( `  A ) ,  ( A `  I ) ,  ( B `  ( I  -  ( `  A
) ) ) )  =  ( ( A ++  B ) `  I
) )
114113eqcomd 2212 . 2  |-  ( ( ( A  e. Word  V  /\  B  e. Word  V )  /\  I  e.  ZZ )  ->  ( ( A ++  B ) `  I
)  =  if ( I  <  ( `  A
) ,  ( A `
 I ) ,  ( B `  (
I  -  ( `  A
) ) ) ) )
1151143impa 1197 1  |-  ( ( A  e. Word  V  /\  B  e. Word  V  /\  I  e.  ZZ )  ->  (
( A ++  B ) `
 I )  =  if ( I  < 
( `  A ) ,  ( A `  I
) ,  ( B `
 ( I  -  ( `  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2177   (/)c0 3464   ifcif 3575   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   RRcr 7944   0cc0 7945    + caddc 7948    < clt 8127    <_ cle 8128    - cmin 8263   ZZcz 9392  ..^cfzo 10284  ♯chash 10942  Word cword 11016   ++ cconcat 11069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-ihash 10943  df-word 11017  df-concat 11070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator