ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq2d Unicode version

Theorem iineq2d 3918
Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.)
Hypotheses
Ref Expression
iineq2d.1  |-  F/ x ph
iineq2d.2  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
iineq2d  |-  ( ph  -> 
|^|_ x  e.  A  B  =  |^|_ x  e.  A  C )

Proof of Theorem iineq2d
StepHypRef Expression
1 iineq2d.1 . . 3  |-  F/ x ph
2 iineq2d.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
32ex 115 . . 3  |-  ( ph  ->  ( x  e.  A  ->  B  =  C ) )
41, 3ralrimi 2558 . 2  |-  ( ph  ->  A. x  e.  A  B  =  C )
5 iineq2 3915 . 2  |-  ( A. x  e.  A  B  =  C  ->  |^|_ x  e.  A  B  =  |^|_
x  e.  A  C
)
64, 5syl 14 1  |-  ( ph  -> 
|^|_ x  e.  A  B  =  |^|_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363   F/wnf 1470    e. wcel 2158   A.wral 2465   |^|_ciin 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-ral 2470  df-iin 3901
This theorem is referenced by:  iineq2dv  3920
  Copyright terms: Public domain W3C validator