ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq2dv Unicode version

Theorem iuneq2dv 3962
Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.)
Hypothesis
Ref Expression
iuneq2dv.1  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
iuneq2dv  |-  ( ph  ->  U_ x  e.  A  B  =  U_ x  e.  A  C )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem iuneq2dv
StepHypRef Expression
1 iuneq2dv.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
21ralrimiva 2581 . 2  |-  ( ph  ->  A. x  e.  A  B  =  C )
3 iuneq2 3957 . 2  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)
42, 3syl 14 1  |-  ( ph  ->  U_ x  e.  A  B  =  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   U_ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-iun 3943
This theorem is referenced by:  iuneq12d  3965  iuneq2d  3966  oav2  6572  omv2  6574  ennnfonelemrn  12905  tgidm  14661
  Copyright terms: Public domain W3C validator