ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuneq2dv Unicode version

Theorem iuneq2dv 3903
Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.)
Hypothesis
Ref Expression
iuneq2dv.1  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
Assertion
Ref Expression
iuneq2dv  |-  ( ph  ->  U_ x  e.  A  B  =  U_ x  e.  A  C )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem iuneq2dv
StepHypRef Expression
1 iuneq2dv.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  =  C )
21ralrimiva 2548 . 2  |-  ( ph  ->  A. x  e.  A  B  =  C )
3 iuneq2 3898 . 2  |-  ( A. x  e.  A  B  =  C  ->  U_ x  e.  A  B  =  U_ x  e.  A  C
)
42, 3syl 14 1  |-  ( ph  ->  U_ x  e.  A  B  =  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453   U_ciun 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-in 3133  df-ss 3140  df-iun 3884
This theorem is referenced by:  iuneq12d  3906  iuneq2d  3907  oav2  6454  omv2  6456  ennnfonelemrn  12385  tgidm  13143
  Copyright terms: Public domain W3C validator