ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq2d GIF version

Theorem iineq2d 3921
Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.)
Hypotheses
Ref Expression
iineq2d.1 𝑥𝜑
iineq2d.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
iineq2d (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)

Proof of Theorem iineq2d
StepHypRef Expression
1 iineq2d.1 . . 3 𝑥𝜑
2 iineq2d.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
32ex 115 . . 3 (𝜑 → (𝑥𝐴𝐵 = 𝐶))
41, 3ralrimi 2561 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
5 iineq2 3918 . 2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
64, 5syl 14 1 (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wnf 1471  wcel 2160  wral 2468   ciin 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-ral 2473  df-iin 3904
This theorem is referenced by:  iineq2dv  3923
  Copyright terms: Public domain W3C validator