| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iineq2d | GIF version | ||
| Description: Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.) |
| Ref | Expression |
|---|---|
| iineq2d.1 | ⊢ Ⅎ𝑥𝜑 |
| iineq2d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iineq2d | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq2d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | iineq2d.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 3 | 2 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 = 𝐶)) |
| 4 | 1, 3 | ralrimi 2576 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 5 | iineq2 3943 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 Ⅎwnf 1482 ∈ wcel 2175 ∀wral 2483 ∩ ciin 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-iin 3929 |
| This theorem is referenced by: iineq2dv 3948 |
| Copyright terms: Public domain | W3C validator |