ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq2 Unicode version

Theorem iineq2 3929
Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iineq2  |-  ( A. x  e.  A  B  =  C  ->  |^|_ x  e.  A  B  =  |^|_
x  e.  A  C
)

Proof of Theorem iineq2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq2 2257 . . . . 5  |-  ( B  =  C  ->  (
y  e.  B  <->  y  e.  C ) )
21ralimi 2557 . . . 4  |-  ( A. x  e.  A  B  =  C  ->  A. x  e.  A  ( y  e.  B  <->  y  e.  C
) )
3 ralbi 2626 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  <->  y  e.  C )  ->  ( A. x  e.  A  y  e.  B  <->  A. x  e.  A  y  e.  C ) )
42, 3syl 14 . . 3  |-  ( A. x  e.  A  B  =  C  ->  ( A. x  e.  A  y  e.  B  <->  A. x  e.  A  y  e.  C )
)
54abbidv 2311 . 2  |-  ( A. x  e.  A  B  =  C  ->  { y  |  A. x  e.  A  y  e.  B }  =  { y  |  A. x  e.  A  y  e.  C }
)
6 df-iin 3915 . 2  |-  |^|_ x  e.  A  B  =  { y  |  A. x  e.  A  y  e.  B }
7 df-iin 3915 . 2  |-  |^|_ x  e.  A  C  =  { y  |  A. x  e.  A  y  e.  C }
85, 6, 73eqtr4g 2251 1  |-  ( A. x  e.  A  B  =  C  ->  |^|_ x  e.  A  B  =  |^|_
x  e.  A  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   |^|_ciin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477  df-iin 3915
This theorem is referenced by:  iineq2i  3931  iineq2d  3932
  Copyright terms: Public domain W3C validator