| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iineq2 | Unicode version | ||
| Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| iineq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2271 |
. . . . 5
| |
| 2 | 1 | ralimi 2571 |
. . . 4
|
| 3 | ralbi 2640 |
. . . 4
| |
| 4 | 2, 3 | syl 14 |
. . 3
|
| 5 | 4 | abbidv 2325 |
. 2
|
| 6 | df-iin 3944 |
. 2
| |
| 7 | df-iin 3944 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-iin 3944 |
| This theorem is referenced by: iineq2i 3960 iineq2d 3961 |
| Copyright terms: Public domain | W3C validator |