| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iineq2 | Unicode version | ||
| Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| iineq2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq2 2260 | 
. . . . 5
 | |
| 2 | 1 | ralimi 2560 | 
. . . 4
 | 
| 3 | ralbi 2629 | 
. . . 4
 | |
| 4 | 2, 3 | syl 14 | 
. . 3
 | 
| 5 | 4 | abbidv 2314 | 
. 2
 | 
| 6 | df-iin 3919 | 
. 2
 | |
| 7 | df-iin 3919 | 
. 2
 | |
| 8 | 5, 6, 7 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-iin 3919 | 
| This theorem is referenced by: iineq2i 3935 iineq2d 3936 | 
| Copyright terms: Public domain | W3C validator |