ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss Unicode version

Theorem inss 3389
Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
Assertion
Ref Expression
inss  |-  ( ( A  C_  C  \/  B  C_  C )  -> 
( A  i^i  B
)  C_  C )

Proof of Theorem inss
StepHypRef Expression
1 ssinss1 3388 . 2  |-  ( A 
C_  C  ->  ( A  i^i  B )  C_  C )
2 incom 3351 . . 3  |-  ( A  i^i  B )  =  ( B  i^i  A
)
3 ssinss1 3388 . . 3  |-  ( B 
C_  C  ->  ( B  i^i  A )  C_  C )
42, 3eqsstrid 3225 . 2  |-  ( B 
C_  C  ->  ( A  i^i  B )  C_  C )
51, 4jaoi 717 1  |-  ( ( A  C_  C  \/  B  C_  C )  -> 
( A  i^i  B
)  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    i^i cin 3152    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator