ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inss Unicode version

Theorem inss 3393
Description: Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.)
Assertion
Ref Expression
inss  |-  ( ( A  C_  C  \/  B  C_  C )  -> 
( A  i^i  B
)  C_  C )

Proof of Theorem inss
StepHypRef Expression
1 ssinss1 3392 . 2  |-  ( A 
C_  C  ->  ( A  i^i  B )  C_  C )
2 incom 3355 . . 3  |-  ( A  i^i  B )  =  ( B  i^i  A
)
3 ssinss1 3392 . . 3  |-  ( B 
C_  C  ->  ( B  i^i  A )  C_  C )
42, 3eqsstrid 3229 . 2  |-  ( B 
C_  C  ->  ( A  i^i  B )  C_  C )
51, 4jaoi 717 1  |-  ( ( A  C_  C  \/  B  C_  C )  -> 
( A  i^i  B
)  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    i^i cin 3156    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator