ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  incom Unicode version

Theorem incom 3352
Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
incom  |-  ( A  i^i  B )  =  ( B  i^i  A
)

Proof of Theorem incom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ancom 266 . . 3  |-  ( ( x  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  x  e.  A )
)
2 elin 3343 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
3 elin 3343 . . 3  |-  ( x  e.  ( B  i^i  A )  <->  ( x  e.  B  /\  x  e.  A ) )
41, 2, 33bitr4i 212 . 2  |-  ( x  e.  ( A  i^i  B )  <->  x  e.  ( B  i^i  A ) )
54eqriv 2190 1  |-  ( A  i^i  B )  =  ( B  i^i  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164    i^i cin 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160
This theorem is referenced by:  ineq2  3355  dfss1  3364  in12  3371  in32  3372  in13  3373  in31  3374  inss2  3381  sslin  3386  inss  3390  indif1  3405  indifcom  3406  indir  3409  symdif1  3425  dfrab2  3435  0in  3483  disjr  3497  ssdifin0  3529  difdifdirss  3532  uneqdifeqim  3533  diftpsn3  3760  iunin1  3978  iinin1m  3983  riinm  3986  rintm  4006  inex2  4165  onintexmid  4606  resiun1  4962  dmres  4964  rescom  4968  resima2  4977  xpssres  4978  resindm  4985  resdmdfsn  4986  resopab  4987  imadisj  5028  ndmima  5043  intirr  5053  djudisj  5094  imainrect  5112  dmresv  5125  resdmres  5158  funimaexg  5339  fnresdisj  5365  fnimaeq0  5376  resasplitss  5434  f0rn0  5449  fvun2  5625  ressnop0  5740  fvsnun1  5756  fsnunfv  5760  offres  6189  smores3  6348  phplem2  6911  unfiin  6984  xpfi  6988  endjusym  7157  djucomen  7278  fzpreddisj  10140  fseq1p1m1  10163  hashunlem  10878  zfz1isolem1  10914  fprodsplit  11743  znnen  12558  setsfun  12656  setsfun0  12657  setsslid  12672  ressressg  12696  restin  14355  metreslem  14559  bdinex2  15462
  Copyright terms: Public domain W3C validator