ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  incom Unicode version

Theorem incom 3365
Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
incom  |-  ( A  i^i  B )  =  ( B  i^i  A
)

Proof of Theorem incom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ancom 266 . . 3  |-  ( ( x  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  x  e.  A )
)
2 elin 3356 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
3 elin 3356 . . 3  |-  ( x  e.  ( B  i^i  A )  <->  ( x  e.  B  /\  x  e.  A ) )
41, 2, 33bitr4i 212 . 2  |-  ( x  e.  ( A  i^i  B )  <->  x  e.  ( B  i^i  A ) )
54eqriv 2202 1  |-  ( A  i^i  B )  =  ( B  i^i  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176    i^i cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172
This theorem is referenced by:  ineq2  3368  dfss1  3377  in12  3384  in32  3385  in13  3386  in31  3387  inss2  3394  sslin  3399  inss  3403  indif1  3418  indifcom  3419  indir  3422  symdif1  3438  dfrab2  3448  0in  3496  disjr  3510  ssdifin0  3542  difdifdirss  3545  uneqdifeqim  3546  diftpsn3  3774  iunin1  3992  iinin1m  3997  riinm  4000  rintm  4020  inex2  4180  onintexmid  4622  resiun1  4979  dmres  4981  rescom  4985  resima2  4994  xpssres  4995  resindm  5002  resdmdfsn  5003  resopab  5004  imadisj  5045  ndmima  5060  intirr  5070  djudisj  5111  imainrect  5129  dmresv  5142  resdmres  5175  funimaexg  5359  fnresdisj  5387  fnimaeq0  5399  resasplitss  5457  f0rn0  5472  fvun2  5648  ressnop0  5767  fvsnun1  5783  fsnunfv  5787  offres  6222  smores3  6381  phplem2  6952  unfiin  7025  xpfi  7031  endjusym  7200  djucomen  7330  fzpreddisj  10195  fseq1p1m1  10218  hashunlem  10951  zfz1isolem1  10987  fprodsplit  11941  znnen  12802  setsfun  12900  setsfun0  12901  setsslid  12916  ressressg  12940  restin  14681  metreslem  14885  perfectlem2  15505  bdinex2  15873
  Copyright terms: Public domain W3C validator