| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > incom | Unicode version | ||
| Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| incom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 |
. . 3
| |
| 2 | elin 3356 |
. . 3
| |
| 3 | elin 3356 |
. . 3
| |
| 4 | 1, 2, 3 | 3bitr4i 212 |
. 2
|
| 5 | 4 | eqriv 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: ineq2 3368 dfss1 3377 in12 3384 in32 3385 in13 3386 in31 3387 inss2 3394 sslin 3399 inss 3403 indif1 3418 indifcom 3419 indir 3422 symdif1 3438 dfrab2 3448 0in 3496 disjr 3510 ssdifin0 3542 difdifdirss 3545 uneqdifeqim 3546 diftpsn3 3774 iunin1 3992 iinin1m 3997 riinm 4000 rintm 4020 inex2 4180 onintexmid 4622 resiun1 4979 dmres 4981 rescom 4985 resima2 4994 xpssres 4995 resindm 5002 resdmdfsn 5003 resopab 5004 imadisj 5045 ndmima 5060 intirr 5070 djudisj 5111 imainrect 5129 dmresv 5142 resdmres 5175 funimaexg 5359 fnresdisj 5387 fnimaeq0 5399 resasplitss 5457 f0rn0 5472 fvun2 5648 ressnop0 5767 fvsnun1 5783 fsnunfv 5787 offres 6222 smores3 6381 phplem2 6952 unfiin 7025 xpfi 7031 endjusym 7200 djucomen 7330 fzpreddisj 10195 fseq1p1m1 10218 hashunlem 10951 zfz1isolem1 10987 fprodsplit 11941 znnen 12802 setsfun 12900 setsfun0 12901 setsslid 12916 ressressg 12940 restin 14681 metreslem 14885 perfectlem2 15505 bdinex2 15873 |
| Copyright terms: Public domain | W3C validator |