![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > incom | Unicode version |
Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
incom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 266 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elin 3342 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | elin 3342 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3bitr4i 212 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | eqriv 2190 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 |
This theorem is referenced by: ineq2 3354 dfss1 3363 in12 3370 in32 3371 in13 3372 in31 3373 inss2 3380 sslin 3385 inss 3389 indif1 3404 indifcom 3405 indir 3408 symdif1 3424 dfrab2 3434 0in 3482 disjr 3496 ssdifin0 3528 difdifdirss 3531 uneqdifeqim 3532 diftpsn3 3759 iunin1 3977 iinin1m 3982 riinm 3985 rintm 4005 inex2 4164 onintexmid 4605 resiun1 4961 dmres 4963 rescom 4967 resima2 4976 xpssres 4977 resindm 4984 resdmdfsn 4985 resopab 4986 imadisj 5027 ndmima 5042 intirr 5052 djudisj 5093 imainrect 5111 dmresv 5124 resdmres 5157 funimaexg 5338 fnresdisj 5364 fnimaeq0 5375 resasplitss 5433 f0rn0 5448 fvun2 5624 ressnop0 5739 fvsnun1 5755 fsnunfv 5759 offres 6187 smores3 6346 phplem2 6909 unfiin 6982 xpfi 6986 endjusym 7155 djucomen 7276 fzpreddisj 10137 fseq1p1m1 10160 hashunlem 10875 zfz1isolem1 10911 fprodsplit 11740 znnen 12555 setsfun 12653 setsfun0 12654 setsslid 12669 ressressg 12693 restin 14344 metreslem 14548 bdinex2 15392 |
Copyright terms: Public domain | W3C validator |