ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  incom Unicode version

Theorem incom 3396
Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
incom  |-  ( A  i^i  B )  =  ( B  i^i  A
)

Proof of Theorem incom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ancom 266 . . 3  |-  ( ( x  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  x  e.  A )
)
2 elin 3387 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
3 elin 3387 . . 3  |-  ( x  e.  ( B  i^i  A )  <->  ( x  e.  B  /\  x  e.  A ) )
41, 2, 33bitr4i 212 . 2  |-  ( x  e.  ( A  i^i  B )  <->  x  e.  ( B  i^i  A ) )
54eqriv 2226 1  |-  ( A  i^i  B )  =  ( B  i^i  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200    i^i cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  ineq2  3399  dfss1  3408  in12  3415  in32  3416  in13  3417  in31  3418  inss2  3425  sslin  3430  inss  3434  indif1  3449  indifcom  3450  indir  3453  symdif1  3469  dfrab2  3479  0in  3527  disjr  3541  ssdifin0  3573  difdifdirss  3576  uneqdifeqim  3577  diftpsn3  3809  iunin1  4030  iinin1m  4035  riinm  4038  rintm  4058  inex2  4219  onintexmid  4665  resiun1  5024  dmres  5026  rescom  5030  resima2  5039  xpssres  5040  resindm  5047  resdmdfsn  5048  resopab  5049  imadisj  5090  ndmima  5105  intirr  5115  djudisj  5156  imainrect  5174  dmresv  5187  resdmres  5220  funimaexg  5405  fnresdisj  5433  fnimaeq0  5445  resasplitss  5505  f0rn0  5520  fvun2  5701  ressnop0  5820  fvsnun1  5836  fsnunfv  5840  offres  6280  smores3  6439  phplem2  7014  unfiin  7088  xpfi  7094  endjusym  7263  djucomen  7398  fzpreddisj  10267  fseq1p1m1  10290  hashunlem  11026  zfz1isolem1  11062  fprodsplit  12108  znnen  12969  setsfun  13067  setsfun0  13068  setsslid  13083  ressressg  13108  restin  14850  metreslem  15054  perfectlem2  15674  bdinex2  16263
  Copyright terms: Public domain W3C validator