| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > incom | Unicode version | ||
| Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| incom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 |
. . 3
| |
| 2 | elin 3387 |
. . 3
| |
| 3 | elin 3387 |
. . 3
| |
| 4 | 1, 2, 3 | 3bitr4i 212 |
. 2
|
| 5 | 4 | eqriv 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: ineq2 3399 dfss1 3408 in12 3415 in32 3416 in13 3417 in31 3418 inss2 3425 sslin 3430 inss 3434 indif1 3449 indifcom 3450 indir 3453 symdif1 3469 dfrab2 3479 0in 3527 disjr 3541 ssdifin0 3573 difdifdirss 3576 uneqdifeqim 3577 diftpsn3 3809 iunin1 4030 iinin1m 4035 riinm 4038 rintm 4058 inex2 4219 onintexmid 4665 resiun1 5024 dmres 5026 rescom 5030 resima2 5039 xpssres 5040 resindm 5047 resdmdfsn 5048 resopab 5049 imadisj 5090 ndmima 5105 intirr 5115 djudisj 5156 imainrect 5174 dmresv 5187 resdmres 5220 funimaexg 5405 fnresdisj 5433 fnimaeq0 5445 resasplitss 5505 f0rn0 5520 fvun2 5701 ressnop0 5820 fvsnun1 5836 fsnunfv 5840 offres 6280 smores3 6439 phplem2 7014 unfiin 7088 xpfi 7094 endjusym 7263 djucomen 7398 fzpreddisj 10267 fseq1p1m1 10290 hashunlem 11026 zfz1isolem1 11062 fprodsplit 12108 znnen 12969 setsfun 13067 setsfun0 13068 setsslid 13083 ressressg 13108 restin 14850 metreslem 15054 perfectlem2 15674 bdinex2 16263 |
| Copyright terms: Public domain | W3C validator |