| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > incom | Unicode version | ||
| Description: Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| incom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 |
. . 3
| |
| 2 | elin 3347 |
. . 3
| |
| 3 | elin 3347 |
. . 3
| |
| 4 | 1, 2, 3 | 3bitr4i 212 |
. 2
|
| 5 | 4 | eqriv 2193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: ineq2 3359 dfss1 3368 in12 3375 in32 3376 in13 3377 in31 3378 inss2 3385 sslin 3390 inss 3394 indif1 3409 indifcom 3410 indir 3413 symdif1 3429 dfrab2 3439 0in 3487 disjr 3501 ssdifin0 3533 difdifdirss 3536 uneqdifeqim 3537 diftpsn3 3764 iunin1 3982 iinin1m 3987 riinm 3990 rintm 4010 inex2 4169 onintexmid 4610 resiun1 4966 dmres 4968 rescom 4972 resima2 4981 xpssres 4982 resindm 4989 resdmdfsn 4990 resopab 4991 imadisj 5032 ndmima 5047 intirr 5057 djudisj 5098 imainrect 5116 dmresv 5129 resdmres 5162 funimaexg 5343 fnresdisj 5371 fnimaeq0 5382 resasplitss 5440 f0rn0 5455 fvun2 5631 ressnop0 5746 fvsnun1 5762 fsnunfv 5766 offres 6201 smores3 6360 phplem2 6923 unfiin 6996 xpfi 7002 endjusym 7171 djucomen 7299 fzpreddisj 10163 fseq1p1m1 10186 hashunlem 10913 zfz1isolem1 10949 fprodsplit 11779 znnen 12640 setsfun 12738 setsfun0 12739 setsslid 12754 ressressg 12778 restin 14496 metreslem 14700 perfectlem2 15320 bdinex2 15630 |
| Copyright terms: Public domain | W3C validator |