ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssinss1 Unicode version

Theorem ssinss1 3402
Description: Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.)
Assertion
Ref Expression
ssinss1  |-  ( A 
C_  C  ->  ( A  i^i  B )  C_  C )

Proof of Theorem ssinss1
StepHypRef Expression
1 inss1 3393 . 2  |-  ( A  i^i  B )  C_  A
2 sstr2 3200 . 2  |-  ( ( A  i^i  B ) 
C_  A  ->  ( A  C_  C  ->  ( A  i^i  B )  C_  C ) )
31, 2ax-mp 5 1  |-  ( A 
C_  C  ->  ( A  i^i  B )  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3165    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179
This theorem is referenced by:  inss  3403  insubm  13350  distop  14590  ntrin  14629  innei  14668  txcnp  14776
  Copyright terms: Public domain W3C validator