![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstrid | Unicode version |
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrid.1 |
![]() ![]() ![]() ![]() |
eqsstrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqsstrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqsstrid.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | sseq1i 3196 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: eqsstrrid 3217 inss 3380 difsnss 3753 tpssi 3774 peano5 4615 xpsspw 4756 iotanul 5211 iotass 5213 fun 5407 fun11iun 5501 fvss 5548 fmpt 5687 fliftrel 5814 opabbrex 5941 1stcof 6189 2ndcof 6190 tfrlemibacc 6352 tfrlemibfn 6354 tfr1onlemssrecs 6365 tfr1onlembacc 6368 tfr1onlembfn 6370 tfrcllemssrecs 6378 tfrcllembacc 6381 tfrcllembfn 6383 caucvgprlemladdrl 7708 peano5nnnn 7922 peano5nni 8953 un0addcl 9240 un0mulcl 9241 4sqlemafi 12430 4sqlemffi 12431 4sqleminfi 12432 4sqlem11 12436 4sqlem19 12444 strleund 12618 mgmidsssn0 12863 lsptpcl 13727 cnptopco 14199 cnconst2 14210 xmetresbl 14417 blsscls2 14470 bj-omtrans 15186 |
Copyright terms: Public domain | W3C validator |