| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | Unicode version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrid.1 |
|
| eqsstrid.2 |
|
| Ref | Expression |
|---|---|
| eqsstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.2 |
. 2
| |
| 2 | eqsstrid.1 |
. . 3
| |
| 3 | 2 | sseq1i 3210 |
. 2
|
| 4 | 1, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqsstrrid 3231 inss 3394 difsnss 3769 tpssi 3790 peano5 4635 xpsspw 4776 iotanul 5235 iotass 5237 fun 5433 fun11iun 5528 fvss 5575 fmpt 5715 fliftrel 5842 ovssunirng 5960 opabbrex 5970 1stcof 6230 2ndcof 6231 tfrlemibacc 6393 tfrlemibfn 6395 tfr1onlemssrecs 6406 tfr1onlembacc 6409 tfr1onlembfn 6411 tfrcllemssrecs 6419 tfrcllembacc 6422 tfrcllembfn 6424 caucvgprlemladdrl 7762 peano5nnnn 7976 peano5nni 9010 un0addcl 9299 un0mulcl 9300 4sqlemafi 12589 4sqlemffi 12590 4sqleminfi 12591 4sqlem11 12595 4sqlem19 12603 strleund 12806 mgmidsssn0 13086 lsptpcl 14026 cnptopco 14542 cnconst2 14553 xmetresbl 14760 blsscls2 14813 perfectlem2 15320 bj-omtrans 15686 |
| Copyright terms: Public domain | W3C validator |