| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | Unicode version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrid.1 |
|
| eqsstrid.2 |
|
| Ref | Expression |
|---|---|
| eqsstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.2 |
. 2
| |
| 2 | eqsstrid.1 |
. . 3
| |
| 3 | 2 | sseq1i 3227 |
. 2
|
| 4 | 1, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: eqsstrrid 3248 inss 3411 difsnss 3790 tpssi 3813 peano5 4664 xpsspw 4805 iotanul 5266 iotass 5268 fun 5469 fun11iun 5565 fvss 5613 fmpt 5753 fliftrel 5884 ovssunirng 6002 opabbrex 6012 1stcof 6272 2ndcof 6273 tfrlemibacc 6435 tfrlemibfn 6437 tfr1onlemssrecs 6448 tfr1onlembacc 6451 tfr1onlembfn 6453 tfrcllemssrecs 6461 tfrcllembacc 6464 tfrcllembfn 6466 caucvgprlemladdrl 7826 peano5nnnn 8040 peano5nni 9074 un0addcl 9363 un0mulcl 9364 4sqlemafi 12833 4sqlemffi 12834 4sqleminfi 12835 4sqlem11 12839 4sqlem19 12847 strleund 13050 mgmidsssn0 13331 lsptpcl 14271 cnptopco 14809 cnconst2 14820 xmetresbl 15027 blsscls2 15080 perfectlem2 15587 bj-omtrans 16091 |
| Copyright terms: Public domain | W3C validator |