| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | Unicode version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrid.1 |
|
| eqsstrid.2 |
|
| Ref | Expression |
|---|---|
| eqsstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.2 |
. 2
| |
| 2 | eqsstrid.1 |
. . 3
| |
| 3 | 2 | sseq1i 3250 |
. 2
|
| 4 | 1, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqsstrrid 3271 inss 3434 difsnss 3814 tpssi 3837 peano5 4690 xpsspw 4831 iotanul 5294 iotass 5296 fun 5497 fun11iun 5593 fvss 5641 fmpt 5785 fliftrel 5916 ovssunirng 6036 opabbrex 6048 1stcof 6309 2ndcof 6310 tfrlemibacc 6472 tfrlemibfn 6474 tfr1onlemssrecs 6485 tfr1onlembacc 6488 tfr1onlembfn 6490 tfrcllemssrecs 6498 tfrcllembacc 6501 tfrcllembfn 6503 caucvgprlemladdrl 7865 peano5nnnn 8079 peano5nni 9113 un0addcl 9402 un0mulcl 9403 4sqlemafi 12918 4sqlemffi 12919 4sqleminfi 12920 4sqlem11 12924 4sqlem19 12932 strleund 13136 mgmidsssn0 13417 lsptpcl 14358 cnptopco 14896 cnconst2 14907 xmetresbl 15114 blsscls2 15167 perfectlem2 15674 setsvtx 15852 bj-omtrans 16319 |
| Copyright terms: Public domain | W3C validator |