| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | Unicode version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrid.1 |
|
| eqsstrid.2 |
|
| Ref | Expression |
|---|---|
| eqsstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.2 |
. 2
| |
| 2 | eqsstrid.1 |
. . 3
| |
| 3 | 2 | sseq1i 3219 |
. 2
|
| 4 | 1, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqsstrrid 3240 inss 3403 difsnss 3779 tpssi 3800 peano5 4647 xpsspw 4788 iotanul 5248 iotass 5250 fun 5450 fun11iun 5545 fvss 5592 fmpt 5732 fliftrel 5863 ovssunirng 5981 opabbrex 5991 1stcof 6251 2ndcof 6252 tfrlemibacc 6414 tfrlemibfn 6416 tfr1onlemssrecs 6427 tfr1onlembacc 6430 tfr1onlembfn 6432 tfrcllemssrecs 6440 tfrcllembacc 6443 tfrcllembfn 6445 caucvgprlemladdrl 7793 peano5nnnn 8007 peano5nni 9041 un0addcl 9330 un0mulcl 9331 4sqlemafi 12751 4sqlemffi 12752 4sqleminfi 12753 4sqlem11 12757 4sqlem19 12765 strleund 12968 mgmidsssn0 13249 lsptpcl 14189 cnptopco 14727 cnconst2 14738 xmetresbl 14945 blsscls2 14998 perfectlem2 15505 bj-omtrans 15929 |
| Copyright terms: Public domain | W3C validator |