Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrid | Unicode version |
Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrid.1 | |
eqsstrid.2 |
Ref | Expression |
---|---|
eqsstrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrid.2 | . 2 | |
2 | eqsstrid.1 | . . 3 | |
3 | 2 | sseq1i 3173 | . 2 |
4 | 1, 3 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqsstrrid 3194 inss 3357 difsnss 3726 tpssi 3746 peano5 4582 xpsspw 4723 iotanul 5175 iotass 5177 fun 5370 fun11iun 5463 fvss 5510 fmpt 5646 fliftrel 5771 opabbrex 5897 1stcof 6142 2ndcof 6143 tfrlemibacc 6305 tfrlemibfn 6307 tfr1onlemssrecs 6318 tfr1onlembacc 6321 tfr1onlembfn 6323 tfrcllemssrecs 6331 tfrcllembacc 6334 tfrcllembfn 6336 caucvgprlemladdrl 7640 peano5nnnn 7854 peano5nni 8881 un0addcl 9168 un0mulcl 9169 strleund 12506 mgmidsssn0 12638 cnptopco 13016 cnconst2 13027 xmetresbl 13234 blsscls2 13287 bj-omtrans 13991 |
Copyright terms: Public domain | W3C validator |