| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrid | Unicode version | ||
| Description: B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrid.1 |
|
| eqsstrid.2 |
|
| Ref | Expression |
|---|---|
| eqsstrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrid.2 |
. 2
| |
| 2 | eqsstrid.1 |
. . 3
| |
| 3 | 2 | sseq1i 3219 |
. 2
|
| 4 | 1, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqsstrrid 3240 inss 3403 difsnss 3779 tpssi 3800 peano5 4646 xpsspw 4787 iotanul 5247 iotass 5249 fun 5448 fun11iun 5543 fvss 5590 fmpt 5730 fliftrel 5861 ovssunirng 5979 opabbrex 5989 1stcof 6249 2ndcof 6250 tfrlemibacc 6412 tfrlemibfn 6414 tfr1onlemssrecs 6425 tfr1onlembacc 6428 tfr1onlembfn 6430 tfrcllemssrecs 6438 tfrcllembacc 6441 tfrcllembfn 6443 caucvgprlemladdrl 7791 peano5nnnn 8005 peano5nni 9039 un0addcl 9328 un0mulcl 9329 4sqlemafi 12718 4sqlemffi 12719 4sqleminfi 12720 4sqlem11 12724 4sqlem19 12732 strleund 12935 mgmidsssn0 13216 lsptpcl 14156 cnptopco 14694 cnconst2 14705 xmetresbl 14912 blsscls2 14965 perfectlem2 15472 bj-omtrans 15892 |
| Copyright terms: Public domain | W3C validator |