Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnexr Unicode version

Theorem intnexr 4076
 Description: If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intnexr

Proof of Theorem intnexr
StepHypRef Expression
1 vprc 4060 . 2
2 eleq1 2202 . 2
31, 2mtbiri 664 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wceq 1331   wcel 1480  cvv 2686  cint 3771 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2121  ax-sep 4046 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-v 2688 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator