| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnexr | Unicode version | ||
| Description: If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intnexr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4175 |
. 2
| |
| 2 | eleq1 2267 |
. 2
| |
| 3 | 1, 2 | mtbiri 676 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |