ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnexr Unicode version

Theorem intnexr 4146
Description: If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intnexr  |-  ( |^| A  =  _V  ->  -. 
|^| A  e.  _V )

Proof of Theorem intnexr
StepHypRef Expression
1 vprc 4130 . 2  |-  -.  _V  e.  _V
2 eleq1 2238 . 2  |-  ( |^| A  =  _V  ->  (
|^| A  e.  _V  <->  _V  e.  _V ) )
31, 2mtbiri 675 1  |-  ( |^| A  =  _V  ->  -. 
|^| A  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353    e. wcel 2146   _Vcvv 2735   |^|cint 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-v 2737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator