ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnexr Unicode version

Theorem intnexr 4234
Description: If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intnexr  |-  ( |^| A  =  _V  ->  -. 
|^| A  e.  _V )

Proof of Theorem intnexr
StepHypRef Expression
1 vprc 4215 . 2  |-  -.  _V  e.  _V
2 eleq1 2292 . 2  |-  ( |^| A  =  _V  ->  (
|^| A  e.  _V  <->  _V  e.  _V ) )
31, 2mtbiri 679 1  |-  ( |^| A  =  _V  ->  -. 
|^| A  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator