| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intexr | Unicode version | ||
| Description: If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intexr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4195 |
. . 3
| |
| 2 | inteq 3905 |
. . . . 5
| |
| 3 | int0 3916 |
. . . . 5
| |
| 4 | 2, 3 | eqtrdi 2258 |
. . . 4
|
| 5 | 4 | eleq1d 2278 |
. . 3
|
| 6 | 1, 5 | mtbiri 679 |
. 2
|
| 7 | 6 | necon2ai 2434 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-v 2781 df-dif 3179 df-nul 3472 df-int 3903 |
| This theorem is referenced by: fival 7105 |
| Copyright terms: Public domain | W3C validator |