| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intexr | Unicode version | ||
| Description: If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intexr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4180 |
. . 3
| |
| 2 | inteq 3890 |
. . . . 5
| |
| 3 | int0 3901 |
. . . . 5
| |
| 4 | 2, 3 | eqtrdi 2255 |
. . . 4
|
| 5 | 4 | eleq1d 2275 |
. . 3
|
| 6 | 1, 5 | mtbiri 677 |
. 2
|
| 7 | 6 | necon2ai 2431 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3169 df-nul 3462 df-int 3888 |
| This theorem is referenced by: fival 7079 |
| Copyright terms: Public domain | W3C validator |