ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexr Unicode version

Theorem intexr 4129
Description: If the intersection of a class exists, the class is nonempty. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexr  |-  ( |^| A  e.  _V  ->  A  =/=  (/) )

Proof of Theorem intexr
StepHypRef Expression
1 vprc 4114 . . 3  |-  -.  _V  e.  _V
2 inteq 3827 . . . . 5  |-  ( A  =  (/)  ->  |^| A  =  |^| (/) )
3 int0 3838 . . . . 5  |-  |^| (/)  =  _V
42, 3eqtrdi 2215 . . . 4  |-  ( A  =  (/)  ->  |^| A  =  _V )
54eleq1d 2235 . . 3  |-  ( A  =  (/)  ->  ( |^| A  e.  _V  <->  _V  e.  _V ) )
61, 5mtbiri 665 . 2  |-  ( A  =  (/)  ->  -.  |^| A  e.  _V )
76necon2ai 2390 1  |-  ( |^| A  e.  _V  ->  A  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    =/= wne 2336   _Vcvv 2726   (/)c0 3409   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-nul 3410  df-int 3825
This theorem is referenced by:  fival  6935
  Copyright terms: Public domain W3C validator