Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intexabim | Unicode version |
Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
intexabim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2158 | . . 3 | |
2 | 1 | exbii 1598 | . 2 |
3 | nfsab1 2160 | . . . 4 | |
4 | nfv 1521 | . . . 4 | |
5 | eleq1 2233 | . . . 4 | |
6 | 3, 4, 5 | cbvex 1749 | . . 3 |
7 | inteximm 4133 | . . 3 | |
8 | 6, 7 | sylbir 134 | . 2 |
9 | 2, 8 | sylbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wex 1485 wcel 2141 cab 2156 cvv 2730 cint 3829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-int 3830 |
This theorem is referenced by: intexrabim 4137 omex 4575 |
Copyright terms: Public domain | W3C validator |