ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexabim Unicode version

Theorem intexabim 4200
Description: The intersection of an inhabited class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexabim  |-  ( E. x ph  ->  |^| { x  |  ph }  e.  _V )

Proof of Theorem intexabim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 abid 2194 . . 3  |-  ( x  e.  { x  | 
ph }  <->  ph )
21exbii 1629 . 2  |-  ( E. x  x  e.  {
x  |  ph }  <->  E. x ph )
3 nfsab1 2196 . . . 4  |-  F/ x  y  e.  { x  |  ph }
4 nfv 1552 . . . 4  |-  F/ y  x  e.  { x  |  ph }
5 eleq1 2269 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  x  e.  { x  |  ph }
) )
63, 4, 5cbvex 1780 . . 3  |-  ( E. y  y  e.  {
x  |  ph }  <->  E. x  x  e.  {
x  |  ph }
)
7 inteximm 4197 . . 3  |-  ( E. y  y  e.  {
x  |  ph }  ->  |^| { x  | 
ph }  e.  _V )
86, 7sylbir 135 . 2  |-  ( E. x  x  e.  {
x  |  ph }  ->  |^| { x  | 
ph }  e.  _V )
92, 8sylbir 135 1  |-  ( E. x ph  ->  |^| { x  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1516    e. wcel 2177   {cab 2192   _Vcvv 2773   |^|cint 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4166
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3173  df-ss 3180  df-int 3888
This theorem is referenced by:  intexrabim  4201  omex  4645
  Copyright terms: Public domain W3C validator