ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnexr GIF version

Theorem intnexr 4214
Description: If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intnexr ( 𝐴 = V → ¬ 𝐴 ∈ V)

Proof of Theorem intnexr
StepHypRef Expression
1 vprc 4195 . 2 ¬ V ∈ V
2 eleq1 2272 . 2 ( 𝐴 = V → ( 𝐴 ∈ V ↔ V ∈ V))
31, 2mtbiri 679 1 ( 𝐴 = V → ¬ 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1375  wcel 2180  Vcvv 2779   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1473  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-v 2781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator