ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnexr GIF version

Theorem intnexr 4199
Description: If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intnexr ( 𝐴 = V → ¬ 𝐴 ∈ V)

Proof of Theorem intnexr
StepHypRef Expression
1 vprc 4180 . 2 ¬ V ∈ V
2 eleq1 2269 . 2 ( 𝐴 = V → ( 𝐴 ∈ V ↔ V ∈ V))
31, 2mtbiri 677 1 ( 𝐴 = V → ¬ 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2177  Vcvv 2773   cint 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator