| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnexr | GIF version | ||
| Description: If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intnexr | ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4195 | . 2 ⊢ ¬ V ∈ V | |
| 2 | eleq1 2272 | . 2 ⊢ (∩ 𝐴 = V → (∩ 𝐴 ∈ V ↔ V ∈ V)) | |
| 3 | 1, 2 | mtbiri 679 | 1 ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∩ cint 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-v 2781 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |