| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnexr | GIF version | ||
| Description: If a class intersection is the universe, it is not a set. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 27-Aug-2018.) |
| Ref | Expression |
|---|---|
| intnexr | ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 4180 | . 2 ⊢ ¬ V ∈ V | |
| 2 | eleq1 2269 | . 2 ⊢ (∩ 𝐴 = V → (∩ 𝐴 ∈ V ↔ V ∈ V)) | |
| 3 | 1, 2 | mtbiri 677 | 1 ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∩ cint 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |