ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vprc Unicode version

Theorem vprc 4166
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc  |-  -.  _V  e.  _V

Proof of Theorem vprc
StepHypRef Expression
1 vnex 4165 . 2  |-  -.  E. x  x  =  _V
2 isset 2769 . 2  |-  ( _V  e.  _V  <->  E. x  x  =  _V )
31, 2mtbir 672 1  |-  -.  _V  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  nvel  4167  intexr  4184  intnexr  4185  abnex  4483  snnex  4484  ruALT  4588  dcextest  4618  iprc  4935  snexxph  7025  elfi2  7047  fi0  7050
  Copyright terms: Public domain W3C validator