ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vprc Unicode version

Theorem vprc 4216
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc  |-  -.  _V  e.  _V

Proof of Theorem vprc
StepHypRef Expression
1 vnex 4215 . 2  |-  -.  E. x  x  =  _V
2 isset 2806 . 2  |-  ( _V  e.  _V  <->  E. x  x  =  _V )
31, 2mtbir 675 1  |-  -.  _V  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  nvel  4217  intexr  4234  intnexr  4235  abnex  4538  snnex  4539  ruALT  4643  dcextest  4673  iprc  4993  snexxph  7117  elfi2  7139  fi0  7142
  Copyright terms: Public domain W3C validator