ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vprc Unicode version

Theorem vprc 4137
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc  |-  -.  _V  e.  _V

Proof of Theorem vprc
StepHypRef Expression
1 vnex 4136 . 2  |-  -.  E. x  x  =  _V
2 isset 2745 . 2  |-  ( _V  e.  _V  <->  E. x  x  =  _V )
31, 2mtbir 671 1  |-  -.  _V  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  nvel  4138  intexr  4152  intnexr  4153  abnex  4449  snnex  4450  ruALT  4552  dcextest  4582  iprc  4897  snexxph  6951  elfi2  6973  fi0  6976
  Copyright terms: Public domain W3C validator