ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isidom Unicode version

Theorem isidom 14225
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.)
Assertion
Ref Expression
isidom  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )

Proof of Theorem isidom
StepHypRef Expression
1 df-idom 14209 . 2  |- IDomn  =  (
CRing  i^i Domn )
21elin2 3392 1  |-  ( R  e. IDomn 
<->  ( R  e.  CRing  /\  R  e. Domn ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   CRingccrg 13946  Domncdomn 14205  IDomncidom 14206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-idom 14209
This theorem is referenced by:  znidom  14606  znidomb  14607
  Copyright terms: Public domain W3C validator