| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znidom | Unicode version | ||
| Description: The
ℤ/nℤ structure is an integral domain when |
| Ref | Expression |
|---|---|
| zntos.y |
|
| Ref | Expression |
|---|---|
| znidom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12640 |
. . . 4
| |
| 2 | nnnn0 9384 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | zntos.y |
. . . 4
| |
| 5 | 4 | zncrng 14617 |
. . 3
|
| 6 | 3, 5 | syl 14 |
. 2
|
| 7 | crngring 13979 |
. . . . 5
| |
| 8 | 1, 2, 5, 7 | 4syl 18 |
. . . 4
|
| 9 | hash2 11042 |
. . . . . 6
| |
| 10 | prmuz2 12661 |
. . . . . . . 8
| |
| 11 | eluzle 9742 |
. . . . . . . 8
| |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
|
| 13 | eqid 2229 |
. . . . . . . . 9
| |
| 14 | 4, 13 | znhash 14628 |
. . . . . . . 8
|
| 15 | 1, 14 | syl 14 |
. . . . . . 7
|
| 16 | 12, 15 | breqtrrd 4111 |
. . . . . 6
|
| 17 | 9, 16 | eqbrtrid 4118 |
. . . . 5
|
| 18 | 2onn 6675 |
. . . . . . . 8
| |
| 19 | nnfi 7042 |
. . . . . . . 8
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . 7
|
| 21 | 4, 13 | znfi 14627 |
. . . . . . 7
|
| 22 | fihashdom 11033 |
. . . . . . 7
| |
| 23 | 20, 21, 22 | sylancr 414 |
. . . . . 6
|
| 24 | 1, 23 | syl 14 |
. . . . 5
|
| 25 | 17, 24 | mpbid 147 |
. . . 4
|
| 26 | 13 | isnzr2 14156 |
. . . 4
|
| 27 | 8, 25, 26 | sylanbrc 417 |
. . 3
|
| 28 | eqid 2229 |
. . . . . . . 8
| |
| 29 | 4, 13, 28 | znzrhfo 14620 |
. . . . . . 7
|
| 30 | 3, 29 | syl 14 |
. . . . . 6
|
| 31 | foelrn 5882 |
. . . . . . 7
| |
| 32 | foelrn 5882 |
. . . . . . 7
| |
| 33 | 31, 32 | anim12dan 602 |
. . . . . 6
|
| 34 | 30, 33 | sylan 283 |
. . . . 5
|
| 35 | reeanv 2701 |
. . . . . . 7
| |
| 36 | euclemma 12676 |
. . . . . . . . . . . 12
| |
| 37 | 36 | 3expb 1228 |
. . . . . . . . . . 11
|
| 38 | 8 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 39 | 28 | zrhrhm 14595 |
. . . . . . . . . . . . . . 15
|
| 40 | 38, 39 | syl 14 |
. . . . . . . . . . . . . 14
|
| 41 | simprl 529 |
. . . . . . . . . . . . . 14
| |
| 42 | simprr 531 |
. . . . . . . . . . . . . 14
| |
| 43 | zringbas 14568 |
. . . . . . . . . . . . . . 15
| |
| 44 | zringmulr 14571 |
. . . . . . . . . . . . . . 15
| |
| 45 | eqid 2229 |
. . . . . . . . . . . . . . 15
| |
| 46 | 43, 44, 45 | rhmmul 14136 |
. . . . . . . . . . . . . 14
|
| 47 | 40, 41, 42, 46 | syl3anc 1271 |
. . . . . . . . . . . . 13
|
| 48 | 47 | eqeq1d 2238 |
. . . . . . . . . . . 12
|
| 49 | zmulcl 9508 |
. . . . . . . . . . . . 13
| |
| 50 | eqid 2229 |
. . . . . . . . . . . . . 14
| |
| 51 | 4, 28, 50 | zndvds0 14622 |
. . . . . . . . . . . . 13
|
| 52 | 3, 49, 51 | syl2an 289 |
. . . . . . . . . . . 12
|
| 53 | 48, 52 | bitr3d 190 |
. . . . . . . . . . 11
|
| 54 | 4, 28, 50 | zndvds0 14622 |
. . . . . . . . . . . . 13
|
| 55 | 3, 41, 54 | syl2an2r 597 |
. . . . . . . . . . . 12
|
| 56 | 4, 28, 50 | zndvds0 14622 |
. . . . . . . . . . . . 13
|
| 57 | 3, 42, 56 | syl2an2r 597 |
. . . . . . . . . . . 12
|
| 58 | 55, 57 | orbi12d 798 |
. . . . . . . . . . 11
|
| 59 | 37, 53, 58 | 3bitr4d 220 |
. . . . . . . . . 10
|
| 60 | 59 | biimpd 144 |
. . . . . . . . 9
|
| 61 | oveq12 6016 |
. . . . . . . . . . 11
| |
| 62 | 61 | eqeq1d 2238 |
. . . . . . . . . 10
|
| 63 | eqeq1 2236 |
. . . . . . . . . . . 12
| |
| 64 | 63 | orbi1d 796 |
. . . . . . . . . . 11
|
| 65 | eqeq1 2236 |
. . . . . . . . . . . 12
| |
| 66 | 65 | orbi2d 795 |
. . . . . . . . . . 11
|
| 67 | 64, 66 | sylan9bb 462 |
. . . . . . . . . 10
|
| 68 | 62, 67 | imbi12d 234 |
. . . . . . . . 9
|
| 69 | 60, 68 | syl5ibrcom 157 |
. . . . . . . 8
|
| 70 | 69 | rexlimdvva 2656 |
. . . . . . 7
|
| 71 | 35, 70 | biimtrrid 153 |
. . . . . 6
|
| 72 | 71 | imp 124 |
. . . . 5
|
| 73 | 34, 72 | syldan 282 |
. . . 4
|
| 74 | 73 | ralrimivva 2612 |
. . 3
|
| 75 | 13, 45, 50 | isdomn 14241 |
. . 3
|
| 76 | 27, 74, 75 | sylanbrc 417 |
. 2
|
| 77 | isidom 14248 |
. 2
| |
| 78 | 6, 76, 77 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-tpos 6397 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-2o 6569 df-oadd 6572 df-er 6688 df-ec 6690 df-qs 6694 df-map 6805 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-dvds 12307 df-gcd 12483 df-prm 12638 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-starv 13133 df-sca 13134 df-vsca 13135 df-ip 13136 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-0g 13299 df-topgen 13301 df-iimas 13343 df-qus 13344 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-mhm 13500 df-grp 13544 df-minusg 13545 df-sbg 13546 df-mulg 13665 df-subg 13715 df-nsg 13716 df-eqg 13717 df-ghm 13786 df-cmn 13831 df-abl 13832 df-mgp 13892 df-rng 13904 df-ur 13931 df-srg 13935 df-ring 13969 df-cring 13970 df-oppr 14039 df-dvdsr 14060 df-rhm 14124 df-nzr 14152 df-subrg 14191 df-domn 14231 df-idom 14232 df-lmod 14261 df-lssm 14325 df-lsp 14359 df-sra 14407 df-rgmod 14408 df-lidl 14441 df-rsp 14442 df-2idl 14472 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 df-zring 14563 df-zrh 14586 df-zn 14588 |
| This theorem is referenced by: znidomb 14630 lgseisenlem3 15759 |
| Copyright terms: Public domain | W3C validator |