| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znidom | Unicode version | ||
| Description: The
ℤ/nℤ structure is an integral domain when |
| Ref | Expression |
|---|---|
| zntos.y |
|
| Ref | Expression |
|---|---|
| znidom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12502 |
. . . 4
| |
| 2 | nnnn0 9317 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | zntos.y |
. . . 4
| |
| 5 | 4 | zncrng 14477 |
. . 3
|
| 6 | 3, 5 | syl 14 |
. 2
|
| 7 | crngring 13840 |
. . . . 5
| |
| 8 | 1, 2, 5, 7 | 4syl 18 |
. . . 4
|
| 9 | hash2 10974 |
. . . . . 6
| |
| 10 | prmuz2 12523 |
. . . . . . . 8
| |
| 11 | eluzle 9675 |
. . . . . . . 8
| |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
|
| 13 | eqid 2206 |
. . . . . . . . 9
| |
| 14 | 4, 13 | znhash 14488 |
. . . . . . . 8
|
| 15 | 1, 14 | syl 14 |
. . . . . . 7
|
| 16 | 12, 15 | breqtrrd 4078 |
. . . . . 6
|
| 17 | 9, 16 | eqbrtrid 4085 |
. . . . 5
|
| 18 | 2onn 6619 |
. . . . . . . 8
| |
| 19 | nnfi 6983 |
. . . . . . . 8
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . 7
|
| 21 | 4, 13 | znfi 14487 |
. . . . . . 7
|
| 22 | fihashdom 10965 |
. . . . . . 7
| |
| 23 | 20, 21, 22 | sylancr 414 |
. . . . . 6
|
| 24 | 1, 23 | syl 14 |
. . . . 5
|
| 25 | 17, 24 | mpbid 147 |
. . . 4
|
| 26 | 13 | isnzr2 14016 |
. . . 4
|
| 27 | 8, 25, 26 | sylanbrc 417 |
. . 3
|
| 28 | eqid 2206 |
. . . . . . . 8
| |
| 29 | 4, 13, 28 | znzrhfo 14480 |
. . . . . . 7
|
| 30 | 3, 29 | syl 14 |
. . . . . 6
|
| 31 | foelrn 5833 |
. . . . . . 7
| |
| 32 | foelrn 5833 |
. . . . . . 7
| |
| 33 | 31, 32 | anim12dan 600 |
. . . . . 6
|
| 34 | 30, 33 | sylan 283 |
. . . . 5
|
| 35 | reeanv 2677 |
. . . . . . 7
| |
| 36 | euclemma 12538 |
. . . . . . . . . . . 12
| |
| 37 | 36 | 3expb 1207 |
. . . . . . . . . . 11
|
| 38 | 8 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 39 | 28 | zrhrhm 14455 |
. . . . . . . . . . . . . . 15
|
| 40 | 38, 39 | syl 14 |
. . . . . . . . . . . . . 14
|
| 41 | simprl 529 |
. . . . . . . . . . . . . 14
| |
| 42 | simprr 531 |
. . . . . . . . . . . . . 14
| |
| 43 | zringbas 14428 |
. . . . . . . . . . . . . . 15
| |
| 44 | zringmulr 14431 |
. . . . . . . . . . . . . . 15
| |
| 45 | eqid 2206 |
. . . . . . . . . . . . . . 15
| |
| 46 | 43, 44, 45 | rhmmul 13996 |
. . . . . . . . . . . . . 14
|
| 47 | 40, 41, 42, 46 | syl3anc 1250 |
. . . . . . . . . . . . 13
|
| 48 | 47 | eqeq1d 2215 |
. . . . . . . . . . . 12
|
| 49 | zmulcl 9441 |
. . . . . . . . . . . . 13
| |
| 50 | eqid 2206 |
. . . . . . . . . . . . . 14
| |
| 51 | 4, 28, 50 | zndvds0 14482 |
. . . . . . . . . . . . 13
|
| 52 | 3, 49, 51 | syl2an 289 |
. . . . . . . . . . . 12
|
| 53 | 48, 52 | bitr3d 190 |
. . . . . . . . . . 11
|
| 54 | 4, 28, 50 | zndvds0 14482 |
. . . . . . . . . . . . 13
|
| 55 | 3, 41, 54 | syl2an2r 595 |
. . . . . . . . . . . 12
|
| 56 | 4, 28, 50 | zndvds0 14482 |
. . . . . . . . . . . . 13
|
| 57 | 3, 42, 56 | syl2an2r 595 |
. . . . . . . . . . . 12
|
| 58 | 55, 57 | orbi12d 795 |
. . . . . . . . . . 11
|
| 59 | 37, 53, 58 | 3bitr4d 220 |
. . . . . . . . . 10
|
| 60 | 59 | biimpd 144 |
. . . . . . . . 9
|
| 61 | oveq12 5965 |
. . . . . . . . . . 11
| |
| 62 | 61 | eqeq1d 2215 |
. . . . . . . . . 10
|
| 63 | eqeq1 2213 |
. . . . . . . . . . . 12
| |
| 64 | 63 | orbi1d 793 |
. . . . . . . . . . 11
|
| 65 | eqeq1 2213 |
. . . . . . . . . . . 12
| |
| 66 | 65 | orbi2d 792 |
. . . . . . . . . . 11
|
| 67 | 64, 66 | sylan9bb 462 |
. . . . . . . . . 10
|
| 68 | 62, 67 | imbi12d 234 |
. . . . . . . . 9
|
| 69 | 60, 68 | syl5ibrcom 157 |
. . . . . . . 8
|
| 70 | 69 | rexlimdvva 2632 |
. . . . . . 7
|
| 71 | 35, 70 | biimtrrid 153 |
. . . . . 6
|
| 72 | 71 | imp 124 |
. . . . 5
|
| 73 | 34, 72 | syldan 282 |
. . . 4
|
| 74 | 73 | ralrimivva 2589 |
. . 3
|
| 75 | 13, 45, 50 | isdomn 14101 |
. . 3
|
| 76 | 27, 74, 75 | sylanbrc 417 |
. 2
|
| 77 | isidom 14108 |
. 2
| |
| 78 | 6, 76, 77 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 ax-addf 8062 ax-mulf 8063 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-tp 3645 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-tpos 6343 df-recs 6403 df-irdg 6468 df-frec 6489 df-1o 6514 df-2o 6515 df-oadd 6518 df-er 6632 df-ec 6634 df-qs 6638 df-map 6749 df-en 6840 df-dom 6841 df-fin 6842 df-sup 7100 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-9 9117 df-n0 9311 df-z 9388 df-dec 9520 df-uz 9664 df-q 9756 df-rp 9791 df-fz 10146 df-fzo 10280 df-fl 10430 df-mod 10485 df-seqfrec 10610 df-exp 10701 df-ihash 10938 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-dvds 12169 df-gcd 12345 df-prm 12500 df-struct 12904 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-iress 12910 df-plusg 12992 df-mulr 12993 df-starv 12994 df-sca 12995 df-vsca 12996 df-ip 12997 df-tset 12998 df-ple 12999 df-ds 13001 df-unif 13002 df-0g 13160 df-topgen 13162 df-iimas 13204 df-qus 13205 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-mhm 13361 df-grp 13405 df-minusg 13406 df-sbg 13407 df-mulg 13526 df-subg 13576 df-nsg 13577 df-eqg 13578 df-ghm 13647 df-cmn 13692 df-abl 13693 df-mgp 13753 df-rng 13765 df-ur 13792 df-srg 13796 df-ring 13830 df-cring 13831 df-oppr 13900 df-dvdsr 13921 df-rhm 13984 df-nzr 14012 df-subrg 14051 df-domn 14091 df-idom 14092 df-lmod 14121 df-lssm 14185 df-lsp 14219 df-sra 14267 df-rgmod 14268 df-lidl 14301 df-rsp 14302 df-2idl 14332 df-bl 14378 df-mopn 14379 df-fg 14381 df-metu 14382 df-cnfld 14389 df-zring 14423 df-zrh 14446 df-zn 14448 |
| This theorem is referenced by: znidomb 14490 lgseisenlem3 15619 |
| Copyright terms: Public domain | W3C validator |