ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znidom Unicode version

Theorem znidom 14116
Description: The ℤ/nℤ structure is an integral domain when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
Hypothesis
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znidom  |-  ( N  e.  Prime  ->  Y  e. IDomn
)

Proof of Theorem znidom
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 12235 . . . 4  |-  ( N  e.  Prime  ->  N  e.  NN )
2 nnnn0 9237 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
31, 2syl 14 . . 3  |-  ( N  e.  Prime  ->  N  e. 
NN0 )
4 zntos.y . . . 4  |-  Y  =  (ℤ/n `  N )
54zncrng 14104 . . 3  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
63, 5syl 14 . 2  |-  ( N  e.  Prime  ->  Y  e. 
CRing )
7 crngring 13482 . . . . 5  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
81, 2, 5, 74syl 18 . . . 4  |-  ( N  e.  Prime  ->  Y  e. 
Ring )
9 hash2 10870 . . . . . 6  |-  ( `  2o )  =  2
10 prmuz2 12256 . . . . . . . 8  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
11 eluzle 9594 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1210, 11syl 14 . . . . . . 7  |-  ( N  e.  Prime  ->  2  <_  N )
13 eqid 2193 . . . . . . . . 9  |-  ( Base `  Y )  =  (
Base `  Y )
144, 13znhash 14115 . . . . . . . 8  |-  ( N  e.  NN  ->  ( `  ( Base `  Y
) )  =  N )
151, 14syl 14 . . . . . . 7  |-  ( N  e.  Prime  ->  ( `  ( Base `  Y ) )  =  N )
1612, 15breqtrrd 4057 . . . . . 6  |-  ( N  e.  Prime  ->  2  <_ 
( `  ( Base `  Y
) ) )
179, 16eqbrtrid 4064 . . . . 5  |-  ( N  e.  Prime  ->  ( `  2o )  <_  ( `  ( Base `  Y ) ) )
18 2onn 6565 . . . . . . . 8  |-  2o  e.  om
19 nnfi 6919 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
2018, 19ax-mp 5 . . . . . . 7  |-  2o  e.  Fin
214, 13znfi 14114 . . . . . . 7  |-  ( N  e.  NN  ->  ( Base `  Y )  e. 
Fin )
22 fihashdom 10861 . . . . . . 7  |-  ( ( 2o  e.  Fin  /\  ( Base `  Y )  e.  Fin )  ->  (
( `  2o )  <_ 
( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
2320, 21, 22sylancr 414 . . . . . 6  |-  ( N  e.  NN  ->  (
( `  2o )  <_ 
( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
241, 23syl 14 . . . . 5  |-  ( N  e.  Prime  ->  ( ( `  2o )  <_  ( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
2517, 24mpbid 147 . . . 4  |-  ( N  e.  Prime  ->  2o  ~<_  ( Base `  Y ) )
2613isnzr2 13658 . . . 4  |-  ( Y  e. NzRing 
<->  ( Y  e.  Ring  /\  2o  ~<_  ( Base `  Y
) ) )
278, 25, 26sylanbrc 417 . . 3  |-  ( N  e.  Prime  ->  Y  e. NzRing
)
28 eqid 2193 . . . . . . . 8  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
294, 13, 28znzrhfo 14107 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
303, 29syl 14 . . . . . 6  |-  ( N  e.  Prime  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
31 foelrn 5787 . . . . . . 7  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  x  e.  ( Base `  Y ) )  ->  E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z ) )
32 foelrn 5787 . . . . . . 7  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  y  e.  ( Base `  Y ) )  ->  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) )
3331, 32anim12dan 600 . . . . . 6  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  ( x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y ) ) )  ->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
3430, 33sylan 283 . . . . 5  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
35 reeanv 2664 . . . . . . 7  |-  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  <->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z
)  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y
) `  w )
) )
36 euclemma 12271 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  ( N  ||  ( z  x.  w )  <->  ( N  ||  z  \/  N  ||  w ) ) )
37363expb 1206 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( N  ||  ( z  x.  w
)  <->  ( N  ||  z  \/  N  ||  w
) ) )
388adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  Y  e.  Ring )
3928zrhrhm 14082 . . . . . . . . . . . . . . 15  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
4038, 39syl 14 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
41 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  z  e.  ZZ )
42 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  w  e.  ZZ )
43 zringbas 14056 . . . . . . . . . . . . . . 15  |-  ZZ  =  ( Base ` ring )
44 zringmulr 14059 . . . . . . . . . . . . . . 15  |-  x.  =  ( .r ` ring )
45 eqid 2193 . . . . . . . . . . . . . . 15  |-  ( .r
`  Y )  =  ( .r `  Y
)
4643, 44, 45rhmmul 13638 . . . . . . . . . . . . . 14  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4740, 41, 42, 46syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4847eqeq1d 2202 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
)  =  ( 0g
`  Y ) ) )
49 zmulcl 9360 . . . . . . . . . . . . 13  |-  ( ( z  e.  ZZ  /\  w  e.  ZZ )  ->  ( z  x.  w
)  e.  ZZ )
50 eqid 2193 . . . . . . . . . . . . . 14  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
514, 28, 50zndvds0 14109 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( z  x.  w
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( 0g `  Y )  <-> 
N  ||  ( z  x.  w ) ) )
523, 49, 51syl2an 289 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
5348, 52bitr3d 190 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
544, 28, 50zndvds0 14109 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  <->  N  ||  z
) )
553, 41, 54syl2an2r 595 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  <->  N  ||  z
) )
564, 28, 50zndvds0 14109 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  w  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y )  <->  N  ||  w
) )
573, 42, 56syl2an2r 595 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y )  <->  N  ||  w
) )
5855, 57orbi12d 794 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) )  <-> 
( N  ||  z  \/  N  ||  w ) ) )
5937, 53, 583bitr4d 220 . . . . . . . . . 10  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6059biimpd 144 . . . . . . . . 9  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) )
61 oveq12 5919 . . . . . . . . . . 11  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
x ( .r `  Y ) y )  =  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
) )
6261eqeq1d 2202 . . . . . . . . . 10  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  <->  ( (
( ZRHom `  Y
) `  z )
( .r `  Y
) ( ( ZRHom `  Y ) `  w
) )  =  ( 0g `  Y ) ) )
63 eqeq1 2200 . . . . . . . . . . . 12  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( x  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y ) ) )
6463orbi1d 792 . . . . . . . . . . 11  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( (
x  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) ) ) )
65 eqeq1 2200 . . . . . . . . . . . 12  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( y  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  w )  =  ( 0g `  Y ) ) )
6665orbi2d 791 . . . . . . . . . . 11  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6764, 66sylan9bb 462 . . . . . . . . . 10  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) )  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6862, 67imbi12d 234 . . . . . . . . 9  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) )  <->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) ) )
6960, 68syl5ibrcom 157 . . . . . . . 8  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7069rexlimdvva 2619 . . . . . . 7  |-  ( N  e.  Prime  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7135, 70biimtrrid 153 . . . . . 6  |-  ( N  e.  Prime  ->  ( ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7271imp 124 . . . . 5  |-  ( ( N  e.  Prime  /\  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7334, 72syldan 282 . . . 4  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7473ralrimivva 2576 . . 3  |-  ( N  e.  Prime  ->  A. x  e.  ( Base `  Y
) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) )
7513, 45, 50isdomn 13743 . . 3  |-  ( Y  e. Domn 
<->  ( Y  e. NzRing  /\  A. x  e.  ( Base `  Y ) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7627, 74, 75sylanbrc 417 . 2  |-  ( N  e.  Prime  ->  Y  e. Domn
)
77 isidom 13750 . 2  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
786, 76, 77sylanbrc 417 1  |-  ( N  e.  Prime  ->  Y  e. IDomn
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4029   omcom 4618   -onto->wfo 5244   ` cfv 5246  (class class class)co 5910   2oc2o 6454    ~<_ cdom 6784   Fincfn 6785    x. cmul 7867    <_ cle 8045   NNcn 8972   2c2 9023   NN0cn0 9230   ZZcz 9307   ZZ>=cuz 9582  ♯chash 10833    || cdvds 11917   Primecprime 12232   Basecbs 12605   .rcmulr 12683   0gc0g 12854   Ringcrg 13470   CRingccrg 13471   RingHom crh 13624  NzRingcnzr 13653  Domncdomn 13730  IDomncidom 13731  ℤringczring 14050   ZRHomczrh 14070  ℤ/nczn 14072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979  ax-pre-mulext 7980  ax-arch 7981  ax-caucvg 7982  ax-addf 7984  ax-mulf 7985
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-po 4325  df-iso 4326  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-tpos 6289  df-recs 6349  df-irdg 6414  df-frec 6435  df-1o 6460  df-2o 6461  df-oadd 6464  df-er 6578  df-ec 6580  df-qs 6584  df-map 6695  df-en 6786  df-dom 6787  df-fin 6788  df-sup 7033  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-div 8682  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-5 9034  df-6 9035  df-7 9036  df-8 9037  df-9 9038  df-n0 9231  df-z 9308  df-dec 9439  df-uz 9583  df-q 9675  df-rp 9710  df-fz 10065  df-fzo 10199  df-fl 10329  df-mod 10384  df-seqfrec 10509  df-exp 10597  df-ihash 10834  df-cj 10973  df-re 10974  df-im 10975  df-rsqrt 11129  df-abs 11130  df-dvds 11918  df-gcd 12067  df-prm 12233  df-struct 12607  df-ndx 12608  df-slot 12609  df-base 12611  df-sets 12612  df-iress 12613  df-plusg 12695  df-mulr 12696  df-starv 12697  df-sca 12698  df-vsca 12699  df-ip 12700  df-ple 12702  df-0g 12856  df-iimas 12872  df-qus 12873  df-mgm 12926  df-sgrp 12972  df-mnd 12985  df-mhm 13018  df-grp 13062  df-minusg 13063  df-sbg 13064  df-mulg 13177  df-subg 13226  df-nsg 13227  df-eqg 13228  df-ghm 13297  df-cmn 13342  df-abl 13343  df-mgp 13395  df-rng 13407  df-ur 13434  df-srg 13438  df-ring 13472  df-cring 13473  df-oppr 13542  df-dvdsr 13563  df-rhm 13626  df-nzr 13654  df-subrg 13693  df-domn 13733  df-idom 13734  df-lmod 13763  df-lssm 13827  df-lsp 13861  df-sra 13909  df-rgmod 13910  df-lidl 13943  df-rsp 13944  df-2idl 13974  df-icnfld 14026  df-zring 14051  df-zrh 14073  df-zn 14075
This theorem is referenced by:  znidomb  14117
  Copyright terms: Public domain W3C validator