| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znidom | Unicode version | ||
| Description: The
ℤ/nℤ structure is an integral domain when |
| Ref | Expression |
|---|---|
| zntos.y |
|
| Ref | Expression |
|---|---|
| znidom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12618 |
. . . 4
| |
| 2 | nnnn0 9364 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | zntos.y |
. . . 4
| |
| 5 | 4 | zncrng 14594 |
. . 3
|
| 6 | 3, 5 | syl 14 |
. 2
|
| 7 | crngring 13957 |
. . . . 5
| |
| 8 | 1, 2, 5, 7 | 4syl 18 |
. . . 4
|
| 9 | hash2 11021 |
. . . . . 6
| |
| 10 | prmuz2 12639 |
. . . . . . . 8
| |
| 11 | eluzle 9722 |
. . . . . . . 8
| |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
|
| 13 | eqid 2229 |
. . . . . . . . 9
| |
| 14 | 4, 13 | znhash 14605 |
. . . . . . . 8
|
| 15 | 1, 14 | syl 14 |
. . . . . . 7
|
| 16 | 12, 15 | breqtrrd 4110 |
. . . . . 6
|
| 17 | 9, 16 | eqbrtrid 4117 |
. . . . 5
|
| 18 | 2onn 6657 |
. . . . . . . 8
| |
| 19 | nnfi 7022 |
. . . . . . . 8
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . 7
|
| 21 | 4, 13 | znfi 14604 |
. . . . . . 7
|
| 22 | fihashdom 11012 |
. . . . . . 7
| |
| 23 | 20, 21, 22 | sylancr 414 |
. . . . . 6
|
| 24 | 1, 23 | syl 14 |
. . . . 5
|
| 25 | 17, 24 | mpbid 147 |
. . . 4
|
| 26 | 13 | isnzr2 14133 |
. . . 4
|
| 27 | 8, 25, 26 | sylanbrc 417 |
. . 3
|
| 28 | eqid 2229 |
. . . . . . . 8
| |
| 29 | 4, 13, 28 | znzrhfo 14597 |
. . . . . . 7
|
| 30 | 3, 29 | syl 14 |
. . . . . 6
|
| 31 | foelrn 5869 |
. . . . . . 7
| |
| 32 | foelrn 5869 |
. . . . . . 7
| |
| 33 | 31, 32 | anim12dan 602 |
. . . . . 6
|
| 34 | 30, 33 | sylan 283 |
. . . . 5
|
| 35 | reeanv 2701 |
. . . . . . 7
| |
| 36 | euclemma 12654 |
. . . . . . . . . . . 12
| |
| 37 | 36 | 3expb 1228 |
. . . . . . . . . . 11
|
| 38 | 8 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 39 | 28 | zrhrhm 14572 |
. . . . . . . . . . . . . . 15
|
| 40 | 38, 39 | syl 14 |
. . . . . . . . . . . . . 14
|
| 41 | simprl 529 |
. . . . . . . . . . . . . 14
| |
| 42 | simprr 531 |
. . . . . . . . . . . . . 14
| |
| 43 | zringbas 14545 |
. . . . . . . . . . . . . . 15
| |
| 44 | zringmulr 14548 |
. . . . . . . . . . . . . . 15
| |
| 45 | eqid 2229 |
. . . . . . . . . . . . . . 15
| |
| 46 | 43, 44, 45 | rhmmul 14113 |
. . . . . . . . . . . . . 14
|
| 47 | 40, 41, 42, 46 | syl3anc 1271 |
. . . . . . . . . . . . 13
|
| 48 | 47 | eqeq1d 2238 |
. . . . . . . . . . . 12
|
| 49 | zmulcl 9488 |
. . . . . . . . . . . . 13
| |
| 50 | eqid 2229 |
. . . . . . . . . . . . . 14
| |
| 51 | 4, 28, 50 | zndvds0 14599 |
. . . . . . . . . . . . 13
|
| 52 | 3, 49, 51 | syl2an 289 |
. . . . . . . . . . . 12
|
| 53 | 48, 52 | bitr3d 190 |
. . . . . . . . . . 11
|
| 54 | 4, 28, 50 | zndvds0 14599 |
. . . . . . . . . . . . 13
|
| 55 | 3, 41, 54 | syl2an2r 597 |
. . . . . . . . . . . 12
|
| 56 | 4, 28, 50 | zndvds0 14599 |
. . . . . . . . . . . . 13
|
| 57 | 3, 42, 56 | syl2an2r 597 |
. . . . . . . . . . . 12
|
| 58 | 55, 57 | orbi12d 798 |
. . . . . . . . . . 11
|
| 59 | 37, 53, 58 | 3bitr4d 220 |
. . . . . . . . . 10
|
| 60 | 59 | biimpd 144 |
. . . . . . . . 9
|
| 61 | oveq12 6003 |
. . . . . . . . . . 11
| |
| 62 | 61 | eqeq1d 2238 |
. . . . . . . . . 10
|
| 63 | eqeq1 2236 |
. . . . . . . . . . . 12
| |
| 64 | 63 | orbi1d 796 |
. . . . . . . . . . 11
|
| 65 | eqeq1 2236 |
. . . . . . . . . . . 12
| |
| 66 | 65 | orbi2d 795 |
. . . . . . . . . . 11
|
| 67 | 64, 66 | sylan9bb 462 |
. . . . . . . . . 10
|
| 68 | 62, 67 | imbi12d 234 |
. . . . . . . . 9
|
| 69 | 60, 68 | syl5ibrcom 157 |
. . . . . . . 8
|
| 70 | 69 | rexlimdvva 2656 |
. . . . . . 7
|
| 71 | 35, 70 | biimtrrid 153 |
. . . . . 6
|
| 72 | 71 | imp 124 |
. . . . 5
|
| 73 | 34, 72 | syldan 282 |
. . . 4
|
| 74 | 73 | ralrimivva 2612 |
. . 3
|
| 75 | 13, 45, 50 | isdomn 14218 |
. . 3
|
| 76 | 27, 74, 75 | sylanbrc 417 |
. 2
|
| 77 | isidom 14225 |
. 2
| |
| 78 | 6, 76, 77 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 ax-addf 8109 ax-mulf 8110 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-tpos 6381 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-2o 6553 df-oadd 6556 df-er 6670 df-ec 6672 df-qs 6676 df-map 6787 df-en 6878 df-dom 6879 df-fin 6880 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-ihash 10985 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-dvds 12285 df-gcd 12461 df-prm 12616 df-struct 13020 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-mulr 13110 df-starv 13111 df-sca 13112 df-vsca 13113 df-ip 13114 df-tset 13115 df-ple 13116 df-ds 13118 df-unif 13119 df-0g 13277 df-topgen 13279 df-iimas 13321 df-qus 13322 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-mhm 13478 df-grp 13522 df-minusg 13523 df-sbg 13524 df-mulg 13643 df-subg 13693 df-nsg 13694 df-eqg 13695 df-ghm 13764 df-cmn 13809 df-abl 13810 df-mgp 13870 df-rng 13882 df-ur 13909 df-srg 13913 df-ring 13947 df-cring 13948 df-oppr 14017 df-dvdsr 14038 df-rhm 14101 df-nzr 14129 df-subrg 14168 df-domn 14208 df-idom 14209 df-lmod 14238 df-lssm 14302 df-lsp 14336 df-sra 14384 df-rgmod 14385 df-lidl 14418 df-rsp 14419 df-2idl 14449 df-bl 14495 df-mopn 14496 df-fg 14498 df-metu 14499 df-cnfld 14506 df-zring 14540 df-zrh 14563 df-zn 14565 |
| This theorem is referenced by: znidomb 14607 lgseisenlem3 15736 |
| Copyright terms: Public domain | W3C validator |