ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znidom Unicode version

Theorem znidom 14606
Description: The ℤ/nℤ structure is an integral domain when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
Hypothesis
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znidom  |-  ( N  e.  Prime  ->  Y  e. IDomn
)

Proof of Theorem znidom
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 12618 . . . 4  |-  ( N  e.  Prime  ->  N  e.  NN )
2 nnnn0 9364 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
31, 2syl 14 . . 3  |-  ( N  e.  Prime  ->  N  e. 
NN0 )
4 zntos.y . . . 4  |-  Y  =  (ℤ/n `  N )
54zncrng 14594 . . 3  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
63, 5syl 14 . 2  |-  ( N  e.  Prime  ->  Y  e. 
CRing )
7 crngring 13957 . . . . 5  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
81, 2, 5, 74syl 18 . . . 4  |-  ( N  e.  Prime  ->  Y  e. 
Ring )
9 hash2 11021 . . . . . 6  |-  ( `  2o )  =  2
10 prmuz2 12639 . . . . . . . 8  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
11 eluzle 9722 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1210, 11syl 14 . . . . . . 7  |-  ( N  e.  Prime  ->  2  <_  N )
13 eqid 2229 . . . . . . . . 9  |-  ( Base `  Y )  =  (
Base `  Y )
144, 13znhash 14605 . . . . . . . 8  |-  ( N  e.  NN  ->  ( `  ( Base `  Y
) )  =  N )
151, 14syl 14 . . . . . . 7  |-  ( N  e.  Prime  ->  ( `  ( Base `  Y ) )  =  N )
1612, 15breqtrrd 4110 . . . . . 6  |-  ( N  e.  Prime  ->  2  <_ 
( `  ( Base `  Y
) ) )
179, 16eqbrtrid 4117 . . . . 5  |-  ( N  e.  Prime  ->  ( `  2o )  <_  ( `  ( Base `  Y ) ) )
18 2onn 6657 . . . . . . . 8  |-  2o  e.  om
19 nnfi 7022 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
2018, 19ax-mp 5 . . . . . . 7  |-  2o  e.  Fin
214, 13znfi 14604 . . . . . . 7  |-  ( N  e.  NN  ->  ( Base `  Y )  e. 
Fin )
22 fihashdom 11012 . . . . . . 7  |-  ( ( 2o  e.  Fin  /\  ( Base `  Y )  e.  Fin )  ->  (
( `  2o )  <_ 
( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
2320, 21, 22sylancr 414 . . . . . 6  |-  ( N  e.  NN  ->  (
( `  2o )  <_ 
( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
241, 23syl 14 . . . . 5  |-  ( N  e.  Prime  ->  ( ( `  2o )  <_  ( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
2517, 24mpbid 147 . . . 4  |-  ( N  e.  Prime  ->  2o  ~<_  ( Base `  Y ) )
2613isnzr2 14133 . . . 4  |-  ( Y  e. NzRing 
<->  ( Y  e.  Ring  /\  2o  ~<_  ( Base `  Y
) ) )
278, 25, 26sylanbrc 417 . . 3  |-  ( N  e.  Prime  ->  Y  e. NzRing
)
28 eqid 2229 . . . . . . . 8  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
294, 13, 28znzrhfo 14597 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
303, 29syl 14 . . . . . 6  |-  ( N  e.  Prime  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
31 foelrn 5869 . . . . . . 7  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  x  e.  ( Base `  Y ) )  ->  E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z ) )
32 foelrn 5869 . . . . . . 7  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  y  e.  ( Base `  Y ) )  ->  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) )
3331, 32anim12dan 602 . . . . . 6  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  ( x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y ) ) )  ->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
3430, 33sylan 283 . . . . 5  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
35 reeanv 2701 . . . . . . 7  |-  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  <->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z
)  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y
) `  w )
) )
36 euclemma 12654 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  ( N  ||  ( z  x.  w )  <->  ( N  ||  z  \/  N  ||  w ) ) )
37363expb 1228 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( N  ||  ( z  x.  w
)  <->  ( N  ||  z  \/  N  ||  w
) ) )
388adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  Y  e.  Ring )
3928zrhrhm 14572 . . . . . . . . . . . . . . 15  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
4038, 39syl 14 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
41 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  z  e.  ZZ )
42 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  w  e.  ZZ )
43 zringbas 14545 . . . . . . . . . . . . . . 15  |-  ZZ  =  ( Base ` ring )
44 zringmulr 14548 . . . . . . . . . . . . . . 15  |-  x.  =  ( .r ` ring )
45 eqid 2229 . . . . . . . . . . . . . . 15  |-  ( .r
`  Y )  =  ( .r `  Y
)
4643, 44, 45rhmmul 14113 . . . . . . . . . . . . . 14  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4740, 41, 42, 46syl3anc 1271 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4847eqeq1d 2238 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
)  =  ( 0g
`  Y ) ) )
49 zmulcl 9488 . . . . . . . . . . . . 13  |-  ( ( z  e.  ZZ  /\  w  e.  ZZ )  ->  ( z  x.  w
)  e.  ZZ )
50 eqid 2229 . . . . . . . . . . . . . 14  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
514, 28, 50zndvds0 14599 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( z  x.  w
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( 0g `  Y )  <-> 
N  ||  ( z  x.  w ) ) )
523, 49, 51syl2an 289 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
5348, 52bitr3d 190 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
544, 28, 50zndvds0 14599 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  <->  N  ||  z
) )
553, 41, 54syl2an2r 597 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  <->  N  ||  z
) )
564, 28, 50zndvds0 14599 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  w  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y )  <->  N  ||  w
) )
573, 42, 56syl2an2r 597 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y )  <->  N  ||  w
) )
5855, 57orbi12d 798 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) )  <-> 
( N  ||  z  \/  N  ||  w ) ) )
5937, 53, 583bitr4d 220 . . . . . . . . . 10  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6059biimpd 144 . . . . . . . . 9  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) )
61 oveq12 6003 . . . . . . . . . . 11  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
x ( .r `  Y ) y )  =  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
) )
6261eqeq1d 2238 . . . . . . . . . 10  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  <->  ( (
( ZRHom `  Y
) `  z )
( .r `  Y
) ( ( ZRHom `  Y ) `  w
) )  =  ( 0g `  Y ) ) )
63 eqeq1 2236 . . . . . . . . . . . 12  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( x  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y ) ) )
6463orbi1d 796 . . . . . . . . . . 11  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( (
x  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) ) ) )
65 eqeq1 2236 . . . . . . . . . . . 12  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( y  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  w )  =  ( 0g `  Y ) ) )
6665orbi2d 795 . . . . . . . . . . 11  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6764, 66sylan9bb 462 . . . . . . . . . 10  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) )  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6862, 67imbi12d 234 . . . . . . . . 9  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) )  <->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) ) )
6960, 68syl5ibrcom 157 . . . . . . . 8  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7069rexlimdvva 2656 . . . . . . 7  |-  ( N  e.  Prime  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7135, 70biimtrrid 153 . . . . . 6  |-  ( N  e.  Prime  ->  ( ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7271imp 124 . . . . 5  |-  ( ( N  e.  Prime  /\  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7334, 72syldan 282 . . . 4  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7473ralrimivva 2612 . . 3  |-  ( N  e.  Prime  ->  A. x  e.  ( Base `  Y
) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) )
7513, 45, 50isdomn 14218 . . 3  |-  ( Y  e. Domn 
<->  ( Y  e. NzRing  /\  A. x  e.  ( Base `  Y ) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7627, 74, 75sylanbrc 417 . 2  |-  ( N  e.  Prime  ->  Y  e. Domn
)
77 isidom 14225 . 2  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
786, 76, 77sylanbrc 417 1  |-  ( N  e.  Prime  ->  Y  e. IDomn
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   class class class wbr 4082   omcom 4679   -onto->wfo 5312   ` cfv 5314  (class class class)co 5994   2oc2o 6546    ~<_ cdom 6876   Fincfn 6877    x. cmul 7992    <_ cle 8170   NNcn 9098   2c2 9149   NN0cn0 9357   ZZcz 9434   ZZ>=cuz 9710  ♯chash 10984    || cdvds 12284   Primecprime 12615   Basecbs 13018   .rcmulr 13097   0gc0g 13275   Ringcrg 13945   CRingccrg 13946   RingHom crh 14099  NzRingcnzr 14128  Domncdomn 14205  IDomncidom 14206  ℤringczring 14539   ZRHomczrh 14560  ℤ/nczn 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107  ax-addf 8109  ax-mulf 8110
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-tpos 6381  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-2o 6553  df-oadd 6556  df-er 6670  df-ec 6672  df-qs 6676  df-map 6787  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461  df-prm 12616  df-struct 13020  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-starv 13111  df-sca 13112  df-vsca 13113  df-ip 13114  df-tset 13115  df-ple 13116  df-ds 13118  df-unif 13119  df-0g 13277  df-topgen 13279  df-iimas 13321  df-qus 13322  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-mhm 13478  df-grp 13522  df-minusg 13523  df-sbg 13524  df-mulg 13643  df-subg 13693  df-nsg 13694  df-eqg 13695  df-ghm 13764  df-cmn 13809  df-abl 13810  df-mgp 13870  df-rng 13882  df-ur 13909  df-srg 13913  df-ring 13947  df-cring 13948  df-oppr 14017  df-dvdsr 14038  df-rhm 14101  df-nzr 14129  df-subrg 14168  df-domn 14208  df-idom 14209  df-lmod 14238  df-lssm 14302  df-lsp 14336  df-sra 14384  df-rgmod 14385  df-lidl 14418  df-rsp 14419  df-2idl 14449  df-bl 14495  df-mopn 14496  df-fg 14498  df-metu 14499  df-cnfld 14506  df-zring 14540  df-zrh 14563  df-zn 14565
This theorem is referenced by:  znidomb  14607  lgseisenlem3  15736
  Copyright terms: Public domain W3C validator