ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znidom Unicode version

Theorem znidom 14189
Description: The ℤ/nℤ structure is an integral domain when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
Hypothesis
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znidom  |-  ( N  e.  Prime  ->  Y  e. IDomn
)

Proof of Theorem znidom
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmnn 12254 . . . 4  |-  ( N  e.  Prime  ->  N  e.  NN )
2 nnnn0 9253 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
31, 2syl 14 . . 3  |-  ( N  e.  Prime  ->  N  e. 
NN0 )
4 zntos.y . . . 4  |-  Y  =  (ℤ/n `  N )
54zncrng 14177 . . 3  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
63, 5syl 14 . 2  |-  ( N  e.  Prime  ->  Y  e. 
CRing )
7 crngring 13540 . . . . 5  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
81, 2, 5, 74syl 18 . . . 4  |-  ( N  e.  Prime  ->  Y  e. 
Ring )
9 hash2 10889 . . . . . 6  |-  ( `  2o )  =  2
10 prmuz2 12275 . . . . . . . 8  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
11 eluzle 9610 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
1210, 11syl 14 . . . . . . 7  |-  ( N  e.  Prime  ->  2  <_  N )
13 eqid 2196 . . . . . . . . 9  |-  ( Base `  Y )  =  (
Base `  Y )
144, 13znhash 14188 . . . . . . . 8  |-  ( N  e.  NN  ->  ( `  ( Base `  Y
) )  =  N )
151, 14syl 14 . . . . . . 7  |-  ( N  e.  Prime  ->  ( `  ( Base `  Y ) )  =  N )
1612, 15breqtrrd 4061 . . . . . 6  |-  ( N  e.  Prime  ->  2  <_ 
( `  ( Base `  Y
) ) )
179, 16eqbrtrid 4068 . . . . 5  |-  ( N  e.  Prime  ->  ( `  2o )  <_  ( `  ( Base `  Y ) ) )
18 2onn 6579 . . . . . . . 8  |-  2o  e.  om
19 nnfi 6933 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
2018, 19ax-mp 5 . . . . . . 7  |-  2o  e.  Fin
214, 13znfi 14187 . . . . . . 7  |-  ( N  e.  NN  ->  ( Base `  Y )  e. 
Fin )
22 fihashdom 10880 . . . . . . 7  |-  ( ( 2o  e.  Fin  /\  ( Base `  Y )  e.  Fin )  ->  (
( `  2o )  <_ 
( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
2320, 21, 22sylancr 414 . . . . . 6  |-  ( N  e.  NN  ->  (
( `  2o )  <_ 
( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
241, 23syl 14 . . . . 5  |-  ( N  e.  Prime  ->  ( ( `  2o )  <_  ( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
2517, 24mpbid 147 . . . 4  |-  ( N  e.  Prime  ->  2o  ~<_  ( Base `  Y ) )
2613isnzr2 13716 . . . 4  |-  ( Y  e. NzRing 
<->  ( Y  e.  Ring  /\  2o  ~<_  ( Base `  Y
) ) )
278, 25, 26sylanbrc 417 . . 3  |-  ( N  e.  Prime  ->  Y  e. NzRing
)
28 eqid 2196 . . . . . . . 8  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
294, 13, 28znzrhfo 14180 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
303, 29syl 14 . . . . . 6  |-  ( N  e.  Prime  ->  ( ZRHom `  Y ) : ZZ -onto->
( Base `  Y )
)
31 foelrn 5799 . . . . . . 7  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  x  e.  ( Base `  Y ) )  ->  E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z ) )
32 foelrn 5799 . . . . . . 7  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  y  e.  ( Base `  Y ) )  ->  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) )
3331, 32anim12dan 600 . . . . . 6  |-  ( ( ( ZRHom `  Y
) : ZZ -onto-> ( Base `  Y )  /\  ( x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y ) ) )  ->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
3430, 33sylan 283 . . . . 5  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y
) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w ) ) )
35 reeanv 2667 . . . . . . 7  |-  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  <->  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z
)  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y
) `  w )
) )
36 euclemma 12290 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  ( N  ||  ( z  x.  w )  <->  ( N  ||  z  \/  N  ||  w ) ) )
37363expb 1206 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( N  ||  ( z  x.  w
)  <->  ( N  ||  z  \/  N  ||  w
) ) )
388adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  Y  e.  Ring )
3928zrhrhm 14155 . . . . . . . . . . . . . . 15  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
4038, 39syl 14 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
41 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  z  e.  ZZ )
42 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  w  e.  ZZ )
43 zringbas 14128 . . . . . . . . . . . . . . 15  |-  ZZ  =  ( Base ` ring )
44 zringmulr 14131 . . . . . . . . . . . . . . 15  |-  x.  =  ( .r ` ring )
45 eqid 2196 . . . . . . . . . . . . . . 15  |-  ( .r
`  Y )  =  ( .r `  Y
)
4643, 44, 45rhmmul 13696 . . . . . . . . . . . . . 14  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  z  e.  ZZ  /\  w  e.  ZZ )  ->  (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4740, 41, 42, 46syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( ( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) ) )
4847eqeq1d 2205 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
)  =  ( 0g
`  Y ) ) )
49 zmulcl 9376 . . . . . . . . . . . . 13  |-  ( ( z  e.  ZZ  /\  w  e.  ZZ )  ->  ( z  x.  w
)  e.  ZZ )
50 eqid 2196 . . . . . . . . . . . . . 14  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
514, 28, 50zndvds0 14182 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( z  x.  w
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( z  x.  w
) )  =  ( 0g `  Y )  <-> 
N  ||  ( z  x.  w ) ) )
523, 49, 51syl2an 289 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  ( z  x.  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
5348, 52bitr3d 190 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  N  ||  ( z  x.  w ) ) )
544, 28, 50zndvds0 14182 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  <->  N  ||  z
) )
553, 41, 54syl2an2r 595 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  <->  N  ||  z
) )
564, 28, 50zndvds0 14182 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  w  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y )  <->  N  ||  w
) )
573, 42, 56syl2an2r 595 . . . . . . . . . . . 12  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y )  <->  N  ||  w
) )
5855, 57orbi12d 794 . . . . . . . . . . 11  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) )  <-> 
( N  ||  z  \/  N  ||  w ) ) )
5937, 53, 583bitr4d 220 . . . . . . . . . 10  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6059biimpd 144 . . . . . . . . 9  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) )
61 oveq12 5931 . . . . . . . . . . 11  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
x ( .r `  Y ) y )  =  ( ( ( ZRHom `  Y ) `  z ) ( .r
`  Y ) ( ( ZRHom `  Y
) `  w )
) )
6261eqeq1d 2205 . . . . . . . . . 10  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  <->  ( (
( ZRHom `  Y
) `  z )
( .r `  Y
) ( ( ZRHom `  Y ) `  w
) )  =  ( 0g `  Y ) ) )
63 eqeq1 2203 . . . . . . . . . . . 12  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( x  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y ) ) )
6463orbi1d 792 . . . . . . . . . . 11  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( (
x  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) ) ) )
65 eqeq1 2203 . . . . . . . . . . . 12  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( y  =  ( 0g `  Y )  <->  ( ( ZRHom `  Y ) `  w )  =  ( 0g `  Y ) ) )
6665orbi2d 791 . . . . . . . . . . 11  |-  ( y  =  ( ( ZRHom `  Y ) `  w
)  ->  ( (
( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  y  =  ( 0g
`  Y ) )  <-> 
( ( ( ZRHom `  Y ) `  z
)  =  ( 0g
`  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6764, 66sylan9bb 462 . . . . . . . . . 10  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) )  <->  ( ( ( ZRHom `  Y ) `  z )  =  ( 0g `  Y )  \/  ( ( ZRHom `  Y ) `  w
)  =  ( 0g
`  Y ) ) ) )
6862, 67imbi12d 234 . . . . . . . . 9  |-  ( ( x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) )  <->  ( (
( ( ZRHom `  Y ) `  z
) ( .r `  Y ) ( ( ZRHom `  Y ) `  w ) )  =  ( 0g `  Y
)  ->  ( (
( ZRHom `  Y
) `  z )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  w )  =  ( 0g `  Y ) ) ) ) )
6960, 68syl5ibrcom 157 . . . . . . . 8  |-  ( ( N  e.  Prime  /\  (
z  e.  ZZ  /\  w  e.  ZZ )
)  ->  ( (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7069rexlimdvva 2622 . . . . . . 7  |-  ( N  e.  Prime  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  (
x  =  ( ( ZRHom `  Y ) `  z )  /\  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7135, 70biimtrrid 153 . . . . . 6  |-  ( N  e.  Prime  ->  ( ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) )  ->  (
( x ( .r
`  Y ) y )  =  ( 0g
`  Y )  -> 
( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7271imp 124 . . . . 5  |-  ( ( N  e.  Prime  /\  ( E. z  e.  ZZ  x  =  ( ( ZRHom `  Y ) `  z )  /\  E. w  e.  ZZ  y  =  ( ( ZRHom `  Y ) `  w
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7334, 72syldan 282 . . . 4  |-  ( ( N  e.  Prime  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
) ) )  -> 
( ( x ( .r `  Y ) y )  =  ( 0g `  Y )  ->  ( x  =  ( 0g `  Y
)  \/  y  =  ( 0g `  Y
) ) ) )
7473ralrimivva 2579 . . 3  |-  ( N  e.  Prime  ->  A. x  e.  ( Base `  Y
) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) )
7513, 45, 50isdomn 13801 . . 3  |-  ( Y  e. Domn 
<->  ( Y  e. NzRing  /\  A. x  e.  ( Base `  Y ) A. y  e.  ( Base `  Y
) ( ( x ( .r `  Y
) y )  =  ( 0g `  Y
)  ->  ( x  =  ( 0g `  Y )  \/  y  =  ( 0g `  Y ) ) ) ) )
7627, 74, 75sylanbrc 417 . 2  |-  ( N  e.  Prime  ->  Y  e. Domn
)
77 isidom 13808 . 2  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
786, 76, 77sylanbrc 417 1  |-  ( N  e.  Prime  ->  Y  e. IDomn
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4033   omcom 4626   -onto->wfo 5256   ` cfv 5258  (class class class)co 5922   2oc2o 6468    ~<_ cdom 6798   Fincfn 6799    x. cmul 7882    <_ cle 8060   NNcn 8987   2c2 9038   NN0cn0 9246   ZZcz 9323   ZZ>=cuz 9598  ♯chash 10852    || cdvds 11936   Primecprime 12251   Basecbs 12654   .rcmulr 12732   0gc0g 12903   Ringcrg 13528   CRingccrg 13529   RingHom crh 13682  NzRingcnzr 13711  Domncdomn 13788  IDomncidom 13789  ℤringczring 14122   ZRHomczrh 14143  ℤ/nczn 14145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997  ax-addf 7999  ax-mulf 8000
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-ec 6594  df-qs 6598  df-map 6709  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7048  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-6 9050  df-7 9051  df-8 9052  df-9 9053  df-n0 9247  df-z 9324  df-dec 9455  df-uz 9599  df-q 9691  df-rp 9726  df-fz 10081  df-fzo 10215  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-ihash 10853  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-dvds 11937  df-gcd 12086  df-prm 12252  df-struct 12656  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-iress 12662  df-plusg 12744  df-mulr 12745  df-starv 12746  df-sca 12747  df-vsca 12748  df-ip 12749  df-tset 12750  df-ple 12751  df-ds 12753  df-unif 12754  df-0g 12905  df-topgen 12907  df-iimas 12921  df-qus 12922  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-mhm 13067  df-grp 13111  df-minusg 13112  df-sbg 13113  df-mulg 13226  df-subg 13276  df-nsg 13277  df-eqg 13278  df-ghm 13347  df-cmn 13392  df-abl 13393  df-mgp 13453  df-rng 13465  df-ur 13492  df-srg 13496  df-ring 13530  df-cring 13531  df-oppr 13600  df-dvdsr 13621  df-rhm 13684  df-nzr 13712  df-subrg 13751  df-domn 13791  df-idom 13792  df-lmod 13821  df-lssm 13885  df-lsp 13919  df-sra 13967  df-rgmod 13968  df-lidl 14001  df-rsp 14002  df-2idl 14032  df-bl 14078  df-mopn 14079  df-fg 14081  df-metu 14082  df-cnfld 14089  df-zring 14123  df-zrh 14146  df-zn 14148
This theorem is referenced by:  znidomb  14190  lgseisenlem3  15280
  Copyright terms: Public domain W3C validator