| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znidom | Unicode version | ||
| Description: The
ℤ/nℤ structure is an integral domain when |
| Ref | Expression |
|---|---|
| zntos.y |
|
| Ref | Expression |
|---|---|
| znidom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12305 |
. . . 4
| |
| 2 | nnnn0 9275 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | zntos.y |
. . . 4
| |
| 5 | 4 | zncrng 14279 |
. . 3
|
| 6 | 3, 5 | syl 14 |
. 2
|
| 7 | crngring 13642 |
. . . . 5
| |
| 8 | 1, 2, 5, 7 | 4syl 18 |
. . . 4
|
| 9 | hash2 10923 |
. . . . . 6
| |
| 10 | prmuz2 12326 |
. . . . . . . 8
| |
| 11 | eluzle 9632 |
. . . . . . . 8
| |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
|
| 13 | eqid 2196 |
. . . . . . . . 9
| |
| 14 | 4, 13 | znhash 14290 |
. . . . . . . 8
|
| 15 | 1, 14 | syl 14 |
. . . . . . 7
|
| 16 | 12, 15 | breqtrrd 4062 |
. . . . . 6
|
| 17 | 9, 16 | eqbrtrid 4069 |
. . . . 5
|
| 18 | 2onn 6588 |
. . . . . . . 8
| |
| 19 | nnfi 6942 |
. . . . . . . 8
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . 7
|
| 21 | 4, 13 | znfi 14289 |
. . . . . . 7
|
| 22 | fihashdom 10914 |
. . . . . . 7
| |
| 23 | 20, 21, 22 | sylancr 414 |
. . . . . 6
|
| 24 | 1, 23 | syl 14 |
. . . . 5
|
| 25 | 17, 24 | mpbid 147 |
. . . 4
|
| 26 | 13 | isnzr2 13818 |
. . . 4
|
| 27 | 8, 25, 26 | sylanbrc 417 |
. . 3
|
| 28 | eqid 2196 |
. . . . . . . 8
| |
| 29 | 4, 13, 28 | znzrhfo 14282 |
. . . . . . 7
|
| 30 | 3, 29 | syl 14 |
. . . . . 6
|
| 31 | foelrn 5802 |
. . . . . . 7
| |
| 32 | foelrn 5802 |
. . . . . . 7
| |
| 33 | 31, 32 | anim12dan 600 |
. . . . . 6
|
| 34 | 30, 33 | sylan 283 |
. . . . 5
|
| 35 | reeanv 2667 |
. . . . . . 7
| |
| 36 | euclemma 12341 |
. . . . . . . . . . . 12
| |
| 37 | 36 | 3expb 1206 |
. . . . . . . . . . 11
|
| 38 | 8 | adantr 276 |
. . . . . . . . . . . . . . 15
|
| 39 | 28 | zrhrhm 14257 |
. . . . . . . . . . . . . . 15
|
| 40 | 38, 39 | syl 14 |
. . . . . . . . . . . . . 14
|
| 41 | simprl 529 |
. . . . . . . . . . . . . 14
| |
| 42 | simprr 531 |
. . . . . . . . . . . . . 14
| |
| 43 | zringbas 14230 |
. . . . . . . . . . . . . . 15
| |
| 44 | zringmulr 14233 |
. . . . . . . . . . . . . . 15
| |
| 45 | eqid 2196 |
. . . . . . . . . . . . . . 15
| |
| 46 | 43, 44, 45 | rhmmul 13798 |
. . . . . . . . . . . . . 14
|
| 47 | 40, 41, 42, 46 | syl3anc 1249 |
. . . . . . . . . . . . 13
|
| 48 | 47 | eqeq1d 2205 |
. . . . . . . . . . . 12
|
| 49 | zmulcl 9398 |
. . . . . . . . . . . . 13
| |
| 50 | eqid 2196 |
. . . . . . . . . . . . . 14
| |
| 51 | 4, 28, 50 | zndvds0 14284 |
. . . . . . . . . . . . 13
|
| 52 | 3, 49, 51 | syl2an 289 |
. . . . . . . . . . . 12
|
| 53 | 48, 52 | bitr3d 190 |
. . . . . . . . . . 11
|
| 54 | 4, 28, 50 | zndvds0 14284 |
. . . . . . . . . . . . 13
|
| 55 | 3, 41, 54 | syl2an2r 595 |
. . . . . . . . . . . 12
|
| 56 | 4, 28, 50 | zndvds0 14284 |
. . . . . . . . . . . . 13
|
| 57 | 3, 42, 56 | syl2an2r 595 |
. . . . . . . . . . . 12
|
| 58 | 55, 57 | orbi12d 794 |
. . . . . . . . . . 11
|
| 59 | 37, 53, 58 | 3bitr4d 220 |
. . . . . . . . . 10
|
| 60 | 59 | biimpd 144 |
. . . . . . . . 9
|
| 61 | oveq12 5934 |
. . . . . . . . . . 11
| |
| 62 | 61 | eqeq1d 2205 |
. . . . . . . . . 10
|
| 63 | eqeq1 2203 |
. . . . . . . . . . . 12
| |
| 64 | 63 | orbi1d 792 |
. . . . . . . . . . 11
|
| 65 | eqeq1 2203 |
. . . . . . . . . . . 12
| |
| 66 | 65 | orbi2d 791 |
. . . . . . . . . . 11
|
| 67 | 64, 66 | sylan9bb 462 |
. . . . . . . . . 10
|
| 68 | 62, 67 | imbi12d 234 |
. . . . . . . . 9
|
| 69 | 60, 68 | syl5ibrcom 157 |
. . . . . . . 8
|
| 70 | 69 | rexlimdvva 2622 |
. . . . . . 7
|
| 71 | 35, 70 | biimtrrid 153 |
. . . . . 6
|
| 72 | 71 | imp 124 |
. . . . 5
|
| 73 | 34, 72 | syldan 282 |
. . . 4
|
| 74 | 73 | ralrimivva 2579 |
. . 3
|
| 75 | 13, 45, 50 | isdomn 13903 |
. . 3
|
| 76 | 27, 74, 75 | sylanbrc 417 |
. 2
|
| 77 | isidom 13910 |
. 2
| |
| 78 | 6, 76, 77 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 ax-addf 8020 ax-mulf 8021 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-tpos 6312 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-ec 6603 df-qs 6607 df-map 6718 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-n0 9269 df-z 9346 df-dec 9477 df-uz 9621 df-q 9713 df-rp 9748 df-fz 10103 df-fzo 10237 df-fl 10379 df-mod 10434 df-seqfrec 10559 df-exp 10650 df-ihash 10887 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-dvds 11972 df-gcd 12148 df-prm 12303 df-struct 12707 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 df-mulr 12796 df-starv 12797 df-sca 12798 df-vsca 12799 df-ip 12800 df-tset 12801 df-ple 12802 df-ds 12804 df-unif 12805 df-0g 12962 df-topgen 12964 df-iimas 13006 df-qus 13007 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-mhm 13163 df-grp 13207 df-minusg 13208 df-sbg 13209 df-mulg 13328 df-subg 13378 df-nsg 13379 df-eqg 13380 df-ghm 13449 df-cmn 13494 df-abl 13495 df-mgp 13555 df-rng 13567 df-ur 13594 df-srg 13598 df-ring 13632 df-cring 13633 df-oppr 13702 df-dvdsr 13723 df-rhm 13786 df-nzr 13814 df-subrg 13853 df-domn 13893 df-idom 13894 df-lmod 13923 df-lssm 13987 df-lsp 14021 df-sra 14069 df-rgmod 14070 df-lidl 14103 df-rsp 14104 df-2idl 14134 df-bl 14180 df-mopn 14181 df-fg 14183 df-metu 14184 df-cnfld 14191 df-zring 14225 df-zrh 14248 df-zn 14250 |
| This theorem is referenced by: znidomb 14292 lgseisenlem3 15399 |
| Copyright terms: Public domain | W3C validator |