ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin2 Unicode version

Theorem elin2 3189
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin2.x  |-  X  =  ( B  i^i  C
)
Assertion
Ref Expression
elin2  |-  ( A  e.  X  <->  ( A  e.  B  /\  A  e.  C ) )

Proof of Theorem elin2
StepHypRef Expression
1 elin2.x . . 3  |-  X  =  ( B  i^i  C
)
21eleq2i 2155 . 2  |-  ( A  e.  X  <->  A  e.  ( B  i^i  C ) )
3 elin 3184 . 2  |-  ( A  e.  ( B  i^i  C )  <->  ( A  e.  B  /\  A  e.  C ) )
42, 3bitri 183 1  |-  ( A  e.  X  <->  ( A  e.  B  /\  A  e.  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1290    e. wcel 1439    i^i cin 2999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-in 3006
This theorem is referenced by:  elin3  3192  fnres  5143  funfvima  5540
  Copyright terms: Public domain W3C validator