ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znidomb Unicode version

Theorem znidomb 14292
Description: The ℤ/nℤ structure is a domain precisely when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znidomb  |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )

Proof of Theorem znidomb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2z 9373 . . . . . 6  |-  2  e.  ZZ
21a1i 9 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  e.  ZZ )
3 nnz 9364 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
43adantr 276 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  ZZ )
5 hash2 10923 . . . . . . 7  |-  ( `  2o )  =  2
6 isidom 13910 . . . . . . . . . . . 12  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
76simprbi 275 . . . . . . . . . . 11  |-  ( Y  e. IDomn  ->  Y  e. Domn )
8 domnnzr 13904 . . . . . . . . . . 11  |-  ( Y  e. Domn  ->  Y  e. NzRing )
97, 8syl 14 . . . . . . . . . 10  |-  ( Y  e. IDomn  ->  Y  e. NzRing )
10 eqid 2196 . . . . . . . . . . . 12  |-  ( Base `  Y )  =  (
Base `  Y )
1110isnzr2 13818 . . . . . . . . . . 11  |-  ( Y  e. NzRing 
<->  ( Y  e.  Ring  /\  2o  ~<_  ( Base `  Y
) ) )
1211simprbi 275 . . . . . . . . . 10  |-  ( Y  e. NzRing  ->  2o  ~<_  ( Base `  Y ) )
139, 12syl 14 . . . . . . . . 9  |-  ( Y  e. IDomn  ->  2o  ~<_  ( Base `  Y ) )
1413adantl 277 . . . . . . . 8  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2o  ~<_  ( Base `  Y
) )
15 2onn 6588 . . . . . . . . . 10  |-  2o  e.  om
16 nnfi 6942 . . . . . . . . . 10  |-  ( 2o  e.  om  ->  2o  e.  Fin )
1715, 16ax-mp 5 . . . . . . . . 9  |-  2o  e.  Fin
18 zntos.y . . . . . . . . . . 11  |-  Y  =  (ℤ/n `  N )
1918, 10znfi 14289 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( Base `  Y )  e. 
Fin )
2019adantr 276 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  (
Base `  Y )  e.  Fin )
21 fihashdom 10914 . . . . . . . . 9  |-  ( ( 2o  e.  Fin  /\  ( Base `  Y )  e.  Fin )  ->  (
( `  2o )  <_ 
( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
2217, 20, 21sylancr 414 . . . . . . . 8  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  ( ( `  2o )  <_  ( `  ( Base `  Y ) )  <->  2o  ~<_  ( Base `  Y ) ) )
2314, 22mpbird 167 . . . . . . 7  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  ( `  2o )  <_  ( `  ( Base `  Y
) ) )
245, 23eqbrtrrid 4070 . . . . . 6  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  <_  ( `  ( Base `  Y ) ) )
2518, 10znhash 14290 . . . . . . 7  |-  ( N  e.  NN  ->  ( `  ( Base `  Y
) )  =  N )
2625adantr 276 . . . . . 6  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  ( `  ( Base `  Y
) )  =  N )
2724, 26breqtrd 4060 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  <_  N )
28 eluz2 9626 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
292, 4, 27, 28syl3anbrc 1183 . . . 4  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  ( ZZ>= `  2
) )
30 nncn 9017 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
3130ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  CC )
32 nncn 9017 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  e.  CC )
3332ad2antrl 490 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  CC )
34 nnap0 9038 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x #  0 )
3534ad2antrl 490 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x #  0
)
3631, 33, 35divcanap1d 8837 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( N  /  x )  x.  x )  =  N )
3736fveq2d 5565 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( ( N  /  x )  x.  x
) )  =  ( ( ZRHom `  Y
) `  N )
)
387ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  Y  e. Domn )
39 domnring 13905 . . . . . . . . . . . 12  |-  ( Y  e. Domn  ->  Y  e.  Ring )
4038, 39syl 14 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  Y  e.  Ring )
41 eqid 2196 . . . . . . . . . . . 12  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
4241zrhrhm 14257 . . . . . . . . . . 11  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
4340, 42syl 14 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
44 simprr 531 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  ||  N
)
45 nnz 9364 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  ZZ )
4645ad2antrl 490 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  ZZ )
47 nnne0 9037 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  =/=  0 )
4847ad2antrl 490 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  =/=  0 )
493ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  ZZ )
50 dvdsval2 11974 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  x  =/=  0  /\  N  e.  ZZ )  ->  (
x  ||  N  <->  ( N  /  x )  e.  ZZ ) )
5146, 48, 49, 50syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  ||  N  <->  ( N  /  x )  e.  ZZ ) )
5244, 51mpbid 147 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  x )  e.  ZZ )
53 zringbas 14230 . . . . . . . . . . 11  |-  ZZ  =  ( Base ` ring )
54 zringmulr 14233 . . . . . . . . . . 11  |-  x.  =  ( .r ` ring )
55 eqid 2196 . . . . . . . . . . 11  |-  ( .r
`  Y )  =  ( .r `  Y
)
5653, 54, 55rhmmul 13798 . . . . . . . . . 10  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  ( N  /  x
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
( N  /  x
)  x.  x ) )  =  ( ( ( ZRHom `  Y
) `  ( N  /  x ) ) ( .r `  Y ) ( ( ZRHom `  Y ) `  x
) ) )
5743, 52, 46, 56syl3anc 1249 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( ( N  /  x )  x.  x
) )  =  ( ( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) ) )
58 iddvds 11988 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  ||  N )
5949, 58syl 14 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  ||  N
)
60 nnnn0 9275 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  NN0 )
6160ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  NN0 )
62 eqid 2196 . . . . . . . . . . . 12  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
6318, 41, 62zndvds0 14284 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  N  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  N
)  =  ( 0g
`  Y )  <->  N  ||  N
) )
6461, 49, 63syl2anc 411 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  N )  =  ( 0g `  Y )  <->  N  ||  N
) )
6559, 64mpbird 167 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  N )  =  ( 0g `  Y ) )
6637, 57, 653eqtr3d 2237 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) ) ( .r `  Y ) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y ) )
6753, 10rhmf 13797 . . . . . . . . . . 11  |-  ( ( ZRHom `  Y )  e.  (ring RingHom  Y )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y
) )
6843, 67syl 14 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
6968, 52ffvelcdmd 5701 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( N  /  x
) )  e.  (
Base `  Y )
)
7068, 46ffvelcdmd 5701 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  x )  e.  (
Base `  Y )
)
7110, 55, 62domneq0 13906 . . . . . . . . 9  |-  ( ( Y  e. Domn  /\  (
( ZRHom `  Y
) `  ( N  /  x ) )  e.  ( Base `  Y
)  /\  ( ( ZRHom `  Y ) `  x )  e.  (
Base `  Y )
)  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y )  <-> 
( ( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) ) ) )
7238, 69, 70, 71syl3anc 1249 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y )  <-> 
( ( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) ) ) )
7366, 72mpbid 147 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  \/  ( ( ZRHom `  Y ) `  x )  =  ( 0g `  Y ) ) )
7418, 41, 62zndvds0 14284 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( N  /  x
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  x
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  x ) ) )
7561, 52, 74syl2anc 411 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  <->  N  ||  ( N  /  x ) ) )
76 nnre 9016 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  RR )
7776ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  RR )
78 nnre 9016 . . . . . . . . . . . . . 14  |-  ( x  e.  NN  ->  x  e.  RR )
7978ad2antrl 490 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  RR )
80 nngt0 9034 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  0  <  N )
8180ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  N )
82 nngt0 9034 . . . . . . . . . . . . . 14  |-  ( x  e.  NN  ->  0  <  x )
8382ad2antrl 490 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  x )
8477, 79, 81, 83divgt0d 8981 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  ( N  /  x ) )
85 elnnz 9355 . . . . . . . . . . . 12  |-  ( ( N  /  x )  e.  NN  <->  ( ( N  /  x )  e.  ZZ  /\  0  < 
( N  /  x
) ) )
8652, 84, 85sylanbrc 417 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  x )  e.  NN )
87 dvdsle 12028 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  /  x
)  e.  NN )  ->  ( N  ||  ( N  /  x
)  ->  N  <_  ( N  /  x ) ) )
8849, 86, 87syl2anc 411 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  ( N  /  x
)  ->  N  <_  ( N  /  x ) ) )
89 1red 8060 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  1  e.  RR )
90 0lt1 8172 . . . . . . . . . . . . 13  |-  0  <  1
9190a1i 9 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  1 )
92 lediv2 8937 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ( 1  e.  RR  /\  0  <  1 )  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( x  <_  1  <->  ( N  /  1 )  <_  ( N  /  x ) ) )
9379, 83, 89, 91, 77, 81, 92syl222anc 1265 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  <_  1  <->  ( N  / 
1 )  <_  ( N  /  x ) ) )
94 nnle1eq1 9033 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  (
x  <_  1  <->  x  = 
1 ) )
9594ad2antrl 490 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  <_  1  <->  x  =  1
) )
9631div1d 8826 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  1 )  =  N )
9796breq1d 4044 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( N  /  1 )  <_ 
( N  /  x
)  <->  N  <_  ( N  /  x ) ) )
9893, 95, 973bitr3rd 219 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  <_  ( N  /  x
)  <->  x  =  1
) )
9988, 98sylibd 149 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  ( N  /  x
)  ->  x  = 
1 ) )
10075, 99sylbid 150 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  ->  x  = 
1 ) )
10118, 41, 62zndvds0 14284 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  x
)  =  ( 0g
`  Y )  <->  N  ||  x
) )
10261, 46, 101syl2anc 411 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y )  <->  N  ||  x
) )
103 nnnn0 9275 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  NN0 )
104103ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  NN0 )
105 dvdseq 12032 . . . . . . . . . . 11  |-  ( ( ( x  e.  NN0  /\  N  e.  NN0 )  /\  ( x  ||  N  /\  N  ||  x ) )  ->  x  =  N )
106105expr 375 . . . . . . . . . 10  |-  ( ( ( x  e.  NN0  /\  N  e.  NN0 )  /\  x  ||  N )  ->  ( N  ||  x  ->  x  =  N ) )
107104, 61, 44, 106syl21anc 1248 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  x  ->  x  =  N ) )
108102, 107sylbid 150 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y )  ->  x  =  N ) )
109100, 108orim12d 787 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) )  -> 
( x  =  1  \/  x  =  N ) ) )
11073, 109mpd 13 . . . . . 6  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  =  1  \/  x  =  N ) )
111110expr 375 . . . . 5  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  x  e.  NN )  ->  ( x  ||  N  ->  ( x  =  1  \/  x  =  N ) ) )
112111ralrimiva 2570 . . . 4  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  A. x  e.  NN  (
x  ||  N  ->  ( x  =  1  \/  x  =  N ) ) )
113 isprm2 12312 . . . 4  |-  ( N  e.  Prime  <->  ( N  e.  ( ZZ>= `  2 )  /\  A. x  e.  NN  ( x  ||  N  -> 
( x  =  1  \/  x  =  N ) ) ) )
11429, 112, 113sylanbrc 417 . . 3  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  Prime )
115114ex 115 . 2  |-  ( N  e.  NN  ->  ( Y  e. IDomn  ->  N  e. 
Prime ) )
11618znidom 14291 . 2  |-  ( N  e.  Prime  ->  Y  e. IDomn
)
117115, 116impbid1 142 1  |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475   class class class wbr 4034   omcom 4627   -->wf 5255   ` cfv 5259  (class class class)co 5925   2oc2o 6477    ~<_ cdom 6807   Fincfn 6808   CCcc 7896   RRcr 7897   0cc0 7898   1c1 7899    x. cmul 7903    < clt 8080    <_ cle 8081   # cap 8627    / cdiv 8718   NNcn 9009   2c2 9060   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620  ♯chash 10886    || cdvds 11971   Primecprime 12302   Basecbs 12705   .rcmulr 12783   0gc0g 12960   Ringcrg 13630   CRingccrg 13631   RingHom crh 13784  NzRingcnzr 13813  Domncdomn 13890  IDomncidom 13891  ℤringczring 14224   ZRHomczrh 14245  ℤ/nczn 14247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-ihash 10887  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-starv 12797  df-sca 12798  df-vsca 12799  df-ip 12800  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-0g 12962  df-topgen 12964  df-iimas 13006  df-qus 13007  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-mhm 13163  df-grp 13207  df-minusg 13208  df-sbg 13209  df-mulg 13328  df-subg 13378  df-nsg 13379  df-eqg 13380  df-ghm 13449  df-cmn 13494  df-abl 13495  df-mgp 13555  df-rng 13567  df-ur 13594  df-srg 13598  df-ring 13632  df-cring 13633  df-oppr 13702  df-dvdsr 13723  df-rhm 13786  df-nzr 13814  df-subrg 13853  df-domn 13893  df-idom 13894  df-lmod 13923  df-lssm 13987  df-lsp 14021  df-sra 14069  df-rgmod 14070  df-lidl 14103  df-rsp 14104  df-2idl 14134  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191  df-zring 14225  df-zrh 14248  df-zn 14250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator