ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znidomb Unicode version

Theorem znidomb 14117
Description: The ℤ/nℤ structure is a domain precisely when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y  |-  Y  =  (ℤ/n `  N )
Assertion
Ref Expression
znidomb  |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )

Proof of Theorem znidomb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 2z 9335 . . . . . 6  |-  2  e.  ZZ
21a1i 9 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  e.  ZZ )
3 nnz 9326 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
43adantr 276 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  ZZ )
5 hash2 10870 . . . . . . 7  |-  ( `  2o )  =  2
6 isidom 13750 . . . . . . . . . . . 12  |-  ( Y  e. IDomn 
<->  ( Y  e.  CRing  /\  Y  e. Domn ) )
76simprbi 275 . . . . . . . . . . 11  |-  ( Y  e. IDomn  ->  Y  e. Domn )
8 domnnzr 13744 . . . . . . . . . . 11  |-  ( Y  e. Domn  ->  Y  e. NzRing )
97, 8syl 14 . . . . . . . . . 10  |-  ( Y  e. IDomn  ->  Y  e. NzRing )
10 eqid 2193 . . . . . . . . . . . 12  |-  ( Base `  Y )  =  (
Base `  Y )
1110isnzr2 13658 . . . . . . . . . . 11  |-  ( Y  e. NzRing 
<->  ( Y  e.  Ring  /\  2o  ~<_  ( Base `  Y
) ) )
1211simprbi 275 . . . . . . . . . 10  |-  ( Y  e. NzRing  ->  2o  ~<_  ( Base `  Y ) )
139, 12syl 14 . . . . . . . . 9  |-  ( Y  e. IDomn  ->  2o  ~<_  ( Base `  Y ) )
1413adantl 277 . . . . . . . 8  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2o  ~<_  ( Base `  Y
) )
15 2onn 6565 . . . . . . . . . 10  |-  2o  e.  om
16 nnfi 6919 . . . . . . . . . 10  |-  ( 2o  e.  om  ->  2o  e.  Fin )
1715, 16ax-mp 5 . . . . . . . . 9  |-  2o  e.  Fin
18 zntos.y . . . . . . . . . . 11  |-  Y  =  (ℤ/n `  N )
1918, 10znfi 14114 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( Base `  Y )  e. 
Fin )
2019adantr 276 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  (
Base `  Y )  e.  Fin )
21 fihashdom 10861 . . . . . . . . 9  |-  ( ( 2o  e.  Fin  /\  ( Base `  Y )  e.  Fin )  ->  (
( `  2o )  <_ 
( `  ( Base `  Y
) )  <->  2o  ~<_  ( Base `  Y ) ) )
2217, 20, 21sylancr 414 . . . . . . . 8  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  ( ( `  2o )  <_  ( `  ( Base `  Y ) )  <->  2o  ~<_  ( Base `  Y ) ) )
2314, 22mpbird 167 . . . . . . 7  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  ( `  2o )  <_  ( `  ( Base `  Y
) ) )
245, 23eqbrtrrid 4065 . . . . . 6  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  <_  ( `  ( Base `  Y ) ) )
2518, 10znhash 14115 . . . . . . 7  |-  ( N  e.  NN  ->  ( `  ( Base `  Y
) )  =  N )
2625adantr 276 . . . . . 6  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  ( `  ( Base `  Y
) )  =  N )
2724, 26breqtrd 4055 . . . . 5  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  2  <_  N )
28 eluz2 9588 . . . . 5  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
292, 4, 27, 28syl3anbrc 1183 . . . 4  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  ( ZZ>= `  2
) )
30 nncn 8980 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
3130ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  CC )
32 nncn 8980 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x  e.  CC )
3332ad2antrl 490 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  CC )
34 nnap0 9001 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  x #  0 )
3534ad2antrl 490 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x #  0
)
3631, 33, 35divcanap1d 8800 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( N  /  x )  x.  x )  =  N )
3736fveq2d 5550 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( ( N  /  x )  x.  x
) )  =  ( ( ZRHom `  Y
) `  N )
)
387ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  Y  e. Domn )
39 domnring 13745 . . . . . . . . . . . 12  |-  ( Y  e. Domn  ->  Y  e.  Ring )
4038, 39syl 14 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  Y  e.  Ring )
41 eqid 2193 . . . . . . . . . . . 12  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
4241zrhrhm 14082 . . . . . . . . . . 11  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
4340, 42syl 14 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
44 simprr 531 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  ||  N
)
45 nnz 9326 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  ZZ )
4645ad2antrl 490 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  ZZ )
47 nnne0 9000 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  =/=  0 )
4847ad2antrl 490 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  =/=  0 )
493ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  ZZ )
50 dvdsval2 11920 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  x  =/=  0  /\  N  e.  ZZ )  ->  (
x  ||  N  <->  ( N  /  x )  e.  ZZ ) )
5146, 48, 49, 50syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  ||  N  <->  ( N  /  x )  e.  ZZ ) )
5244, 51mpbid 147 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  x )  e.  ZZ )
53 zringbas 14056 . . . . . . . . . . 11  |-  ZZ  =  ( Base ` ring )
54 zringmulr 14059 . . . . . . . . . . 11  |-  x.  =  ( .r ` ring )
55 eqid 2193 . . . . . . . . . . 11  |-  ( .r
`  Y )  =  ( .r `  Y
)
5653, 54, 55rhmmul 13638 . . . . . . . . . 10  |-  ( ( ( ZRHom `  Y
)  e.  (ring RingHom  Y )  /\  ( N  /  x
)  e.  ZZ  /\  x  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
( N  /  x
)  x.  x ) )  =  ( ( ( ZRHom `  Y
) `  ( N  /  x ) ) ( .r `  Y ) ( ( ZRHom `  Y ) `  x
) ) )
5743, 52, 46, 56syl3anc 1249 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( ( N  /  x )  x.  x
) )  =  ( ( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) ) )
58 iddvds 11934 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  ||  N )
5949, 58syl 14 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  ||  N
)
60 nnnn0 9237 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  NN0 )
6160ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  NN0 )
62 eqid 2193 . . . . . . . . . . . 12  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
6318, 41, 62zndvds0 14109 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  N  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  N
)  =  ( 0g
`  Y )  <->  N  ||  N
) )
6461, 49, 63syl2anc 411 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  N )  =  ( 0g `  Y )  <->  N  ||  N
) )
6559, 64mpbird 167 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  N )  =  ( 0g `  Y ) )
6637, 57, 653eqtr3d 2234 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) ) ( .r `  Y ) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y ) )
6753, 10rhmf 13637 . . . . . . . . . . 11  |-  ( ( ZRHom `  Y )  e.  (ring RingHom  Y )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y
) )
6843, 67syl 14 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ZRHom `  Y ) : ZZ --> ( Base `  Y )
)
6968, 52ffvelcdmd 5686 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  ( N  /  x
) )  e.  (
Base `  Y )
)
7068, 46ffvelcdmd 5686 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( ZRHom `  Y ) `  x )  e.  (
Base `  Y )
)
7110, 55, 62domneq0 13746 . . . . . . . . 9  |-  ( ( Y  e. Domn  /\  (
( ZRHom `  Y
) `  ( N  /  x ) )  e.  ( Base `  Y
)  /\  ( ( ZRHom `  Y ) `  x )  e.  (
Base `  Y )
)  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y )  <-> 
( ( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) ) ) )
7238, 69, 70, 71syl3anc 1249 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) ) ( .r `  Y
) ( ( ZRHom `  Y ) `  x
) )  =  ( 0g `  Y )  <-> 
( ( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) ) ) )
7366, 72mpbid 147 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  \/  ( ( ZRHom `  Y ) `  x )  =  ( 0g `  Y ) ) )
7418, 41, 62zndvds0 14109 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( N  /  x
)  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  ( N  /  x
) )  =  ( 0g `  Y )  <-> 
N  ||  ( N  /  x ) ) )
7561, 52, 74syl2anc 411 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  <->  N  ||  ( N  /  x ) ) )
76 nnre 8979 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  RR )
7776ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  N  e.  RR )
78 nnre 8979 . . . . . . . . . . . . . 14  |-  ( x  e.  NN  ->  x  e.  RR )
7978ad2antrl 490 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  RR )
80 nngt0 8997 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  0  <  N )
8180ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  N )
82 nngt0 8997 . . . . . . . . . . . . . 14  |-  ( x  e.  NN  ->  0  <  x )
8382ad2antrl 490 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  x )
8477, 79, 81, 83divgt0d 8944 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  ( N  /  x ) )
85 elnnz 9317 . . . . . . . . . . . 12  |-  ( ( N  /  x )  e.  NN  <->  ( ( N  /  x )  e.  ZZ  /\  0  < 
( N  /  x
) ) )
8652, 84, 85sylanbrc 417 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  x )  e.  NN )
87 dvdsle 11973 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  /  x
)  e.  NN )  ->  ( N  ||  ( N  /  x
)  ->  N  <_  ( N  /  x ) ) )
8849, 86, 87syl2anc 411 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  ( N  /  x
)  ->  N  <_  ( N  /  x ) ) )
89 1red 8024 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  1  e.  RR )
90 0lt1 8136 . . . . . . . . . . . . 13  |-  0  <  1
9190a1i 9 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  0  <  1 )
92 lediv2 8900 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ( 1  e.  RR  /\  0  <  1 )  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( x  <_  1  <->  ( N  /  1 )  <_  ( N  /  x ) ) )
9379, 83, 89, 91, 77, 81, 92syl222anc 1265 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  <_  1  <->  ( N  / 
1 )  <_  ( N  /  x ) ) )
94 nnle1eq1 8996 . . . . . . . . . . . 12  |-  ( x  e.  NN  ->  (
x  <_  1  <->  x  = 
1 ) )
9594ad2antrl 490 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  <_  1  <->  x  =  1
) )
9631div1d 8789 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  /  1 )  =  N )
9796breq1d 4039 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( ( N  /  1 )  <_ 
( N  /  x
)  <->  N  <_  ( N  /  x ) ) )
9893, 95, 973bitr3rd 219 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  <_  ( N  /  x
)  <->  x  =  1
) )
9988, 98sylibd 149 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  ( N  /  x
)  ->  x  = 
1 ) )
10075, 99sylbid 150 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  ( N  /  x ) )  =  ( 0g `  Y
)  ->  x  = 
1 ) )
10118, 41, 62zndvds0 14109 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  x
)  =  ( 0g
`  Y )  <->  N  ||  x
) )
10261, 46, 101syl2anc 411 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y )  <->  N  ||  x
) )
103 nnnn0 9237 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  NN0 )
104103ad2antrl 490 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  x  e.  NN0 )
105 dvdseq 11977 . . . . . . . . . . 11  |-  ( ( ( x  e.  NN0  /\  N  e.  NN0 )  /\  ( x  ||  N  /\  N  ||  x ) )  ->  x  =  N )
106105expr 375 . . . . . . . . . 10  |-  ( ( ( x  e.  NN0  /\  N  e.  NN0 )  /\  x  ||  N )  ->  ( N  ||  x  ->  x  =  N ) )
107104, 61, 44, 106syl21anc 1248 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( N  ||  x  ->  x  =  N ) )
108102, 107sylbid 150 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y )  ->  x  =  N ) )
109100, 108orim12d 787 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( (
( ( ZRHom `  Y ) `  ( N  /  x ) )  =  ( 0g `  Y )  \/  (
( ZRHom `  Y
) `  x )  =  ( 0g `  Y ) )  -> 
( x  =  1  \/  x  =  N ) ) )
11073, 109mpd 13 . . . . . 6  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  ( x  e.  NN  /\  x  ||  N ) )  ->  ( x  =  1  \/  x  =  N ) )
111110expr 375 . . . . 5  |-  ( ( ( N  e.  NN  /\  Y  e. IDomn )  /\  x  e.  NN )  ->  ( x  ||  N  ->  ( x  =  1  \/  x  =  N ) ) )
112111ralrimiva 2567 . . . 4  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  A. x  e.  NN  (
x  ||  N  ->  ( x  =  1  \/  x  =  N ) ) )
113 isprm2 12242 . . . 4  |-  ( N  e.  Prime  <->  ( N  e.  ( ZZ>= `  2 )  /\  A. x  e.  NN  ( x  ||  N  -> 
( x  =  1  \/  x  =  N ) ) ) )
11429, 112, 113sylanbrc 417 . . 3  |-  ( ( N  e.  NN  /\  Y  e. IDomn )  ->  N  e.  Prime )
115114ex 115 . 2  |-  ( N  e.  NN  ->  ( Y  e. IDomn  ->  N  e. 
Prime ) )
11618znidom 14116 . 2  |-  ( N  e.  Prime  ->  Y  e. IDomn
)
117115, 116impbid1 142 1  |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   class class class wbr 4029   omcom 4618   -->wf 5242   ` cfv 5246  (class class class)co 5910   2oc2o 6454    ~<_ cdom 6784   Fincfn 6785   CCcc 7860   RRcr 7861   0cc0 7862   1c1 7863    x. cmul 7867    < clt 8044    <_ cle 8045   # cap 8590    / cdiv 8681   NNcn 8972   2c2 9023   NN0cn0 9230   ZZcz 9307   ZZ>=cuz 9582  ♯chash 10833    || cdvds 11917   Primecprime 12232   Basecbs 12605   .rcmulr 12683   0gc0g 12854   Ringcrg 13470   CRingccrg 13471   RingHom crh 13624  NzRingcnzr 13653  Domncdomn 13730  IDomncidom 13731  ℤringczring 14050   ZRHomczrh 14070  ℤ/nczn 14072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-iinf 4616  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-mulrcl 7961  ax-addcom 7962  ax-mulcom 7963  ax-addass 7964  ax-mulass 7965  ax-distr 7966  ax-i2m1 7967  ax-0lt1 7968  ax-1rid 7969  ax-0id 7970  ax-rnegex 7971  ax-precex 7972  ax-cnre 7973  ax-pre-ltirr 7974  ax-pre-ltwlin 7975  ax-pre-lttrn 7976  ax-pre-apti 7977  ax-pre-ltadd 7978  ax-pre-mulgt0 7979  ax-pre-mulext 7980  ax-arch 7981  ax-caucvg 7982  ax-addf 7984  ax-mulf 7985
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-po 4325  df-iso 4326  df-iord 4395  df-on 4397  df-ilim 4398  df-suc 4400  df-iom 4619  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1st 6184  df-2nd 6185  df-tpos 6289  df-recs 6349  df-irdg 6414  df-frec 6435  df-1o 6460  df-2o 6461  df-oadd 6464  df-er 6578  df-ec 6580  df-qs 6584  df-map 6695  df-en 6786  df-dom 6787  df-fin 6788  df-sup 7033  df-pnf 8046  df-mnf 8047  df-xr 8048  df-ltxr 8049  df-le 8050  df-sub 8182  df-neg 8183  df-reap 8584  df-ap 8591  df-div 8682  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-5 9034  df-6 9035  df-7 9036  df-8 9037  df-9 9038  df-n0 9231  df-z 9308  df-dec 9439  df-uz 9583  df-q 9675  df-rp 9710  df-fz 10065  df-fzo 10199  df-fl 10329  df-mod 10384  df-seqfrec 10509  df-exp 10597  df-ihash 10834  df-cj 10973  df-re 10974  df-im 10975  df-rsqrt 11129  df-abs 11130  df-dvds 11918  df-gcd 12067  df-prm 12233  df-struct 12607  df-ndx 12608  df-slot 12609  df-base 12611  df-sets 12612  df-iress 12613  df-plusg 12695  df-mulr 12696  df-starv 12697  df-sca 12698  df-vsca 12699  df-ip 12700  df-ple 12702  df-0g 12856  df-iimas 12872  df-qus 12873  df-mgm 12926  df-sgrp 12972  df-mnd 12985  df-mhm 13018  df-grp 13062  df-minusg 13063  df-sbg 13064  df-mulg 13177  df-subg 13226  df-nsg 13227  df-eqg 13228  df-ghm 13297  df-cmn 13342  df-abl 13343  df-mgp 13395  df-rng 13407  df-ur 13434  df-srg 13438  df-ring 13472  df-cring 13473  df-oppr 13542  df-dvdsr 13563  df-rhm 13626  df-nzr 13654  df-subrg 13693  df-domn 13733  df-idom 13734  df-lmod 13763  df-lssm 13827  df-lsp 13861  df-sra 13909  df-rgmod 13910  df-lidl 13943  df-rsp 13944  df-2idl 13974  df-icnfld 14026  df-zring 14051  df-zrh 14073  df-zn 14075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator