| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp3bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| 3simp1bi.1 | 
 | 
| Ref | Expression | 
|---|---|
| simp3bi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simp1bi.1 | 
. . 3
 | |
| 2 | 1 | biimpi 120 | 
. 2
 | 
| 3 | 2 | simp3d 1013 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: limuni 4431 smores2 6352 ersym 6604 ertr 6607 fvixp 6762 fiintim 6992 eluzle 9613 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 sin01gt0 11927 gznegcl 12544 gzcjcl 12545 gzaddcl 12546 gzmulcl 12547 gzabssqcl 12550 4sqlem4a 12560 ennnfonelemim 12641 xpsff1o 12992 subggrp 13307 srgdilem 13525 srgrz 13540 srglz 13541 ringdilem 13568 ringsrg 13603 subrngss 13756 lmodlema 13848 reeff1oleme 15008 cosq14gt0 15068 cosq23lt0 15069 coseq0q4123 15070 coseq00topi 15071 coseq0negpitopi 15072 cosq34lt1 15086 cos02pilt1 15087 ioocosf1o 15090 2sqlem2 15356 2sqlem3 15358 | 
| Copyright terms: Public domain | W3C validator |