| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp3bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp3d 1013 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limuni 4442 smores2 6379 ersym 6631 ertr 6634 fvixp 6789 en2 6911 fiintim 7027 eluzle 9659 ef01bndlem 12009 sin01bnd 12010 cos01bnd 12011 sin01gt0 12015 gznegcl 12640 gzcjcl 12641 gzaddcl 12642 gzmulcl 12643 gzabssqcl 12646 4sqlem4a 12656 ennnfonelemim 12737 prdsbasprj 13056 xpsff1o 13123 subggrp 13455 srgdilem 13673 srgrz 13688 srglz 13689 ringdilem 13716 ringsrg 13751 subrngss 13904 lmodlema 13996 reeff1oleme 15186 cosq14gt0 15246 cosq23lt0 15247 coseq0q4123 15248 coseq00topi 15249 coseq0negpitopi 15250 cosq34lt1 15264 cos02pilt1 15265 ioocosf1o 15268 2sqlem2 15534 2sqlem3 15536 |
| Copyright terms: Public domain | W3C validator |