| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp3bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp3d 1014 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: limuni 4443 smores2 6380 ersym 6632 ertr 6635 fvixp 6790 en2 6912 fiintim 7028 eluzle 9660 ef01bndlem 12067 sin01bnd 12068 cos01bnd 12069 sin01gt0 12073 gznegcl 12698 gzcjcl 12699 gzaddcl 12700 gzmulcl 12701 gzabssqcl 12704 4sqlem4a 12714 ennnfonelemim 12795 prdsbasprj 13114 xpsff1o 13181 subggrp 13513 srgdilem 13731 srgrz 13746 srglz 13747 ringdilem 13774 ringsrg 13809 subrngss 13962 lmodlema 14054 reeff1oleme 15244 cosq14gt0 15304 cosq23lt0 15305 coseq0q4123 15306 coseq00topi 15307 coseq0negpitopi 15308 cosq34lt1 15322 cos02pilt1 15323 ioocosf1o 15326 2sqlem2 15592 2sqlem3 15594 |
| Copyright terms: Public domain | W3C validator |