| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp3bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp3d 1014 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: limuni 4461 smores2 6403 ersym 6655 ertr 6658 fvixp 6813 en2 6936 fiintim 7054 eluzle 9695 ef01bndlem 12182 sin01bnd 12183 cos01bnd 12184 sin01gt0 12188 gznegcl 12813 gzcjcl 12814 gzaddcl 12815 gzmulcl 12816 gzabssqcl 12819 4sqlem4a 12829 ennnfonelemim 12910 prdsbasprj 13229 xpsff1o 13296 subggrp 13628 srgdilem 13846 srgrz 13861 srglz 13862 ringdilem 13889 ringsrg 13924 subrngss 14077 lmodlema 14169 reeff1oleme 15359 cosq14gt0 15419 cosq23lt0 15420 coseq0q4123 15421 coseq00topi 15422 coseq0negpitopi 15423 cosq34lt1 15437 cos02pilt1 15438 ioocosf1o 15441 2sqlem2 15707 2sqlem3 15709 |
| Copyright terms: Public domain | W3C validator |