Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3bi | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 |
Ref | Expression |
---|---|
simp3bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 | |
2 | 1 | biimpi 119 | . 2 |
3 | 2 | simp3d 1000 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 969 |
This theorem is referenced by: limuni 4371 smores2 6256 ersym 6507 ertr 6510 fvixp 6663 fiintim 6888 eluzle 9472 ef01bndlem 11691 sin01bnd 11692 cos01bnd 11693 sin01gt0 11696 gznegcl 12299 gzcjcl 12300 gzaddcl 12301 gzmulcl 12302 gzabssqcl 12305 4sqlem4a 12315 ennnfonelemim 12351 reeff1oleme 13291 cosq14gt0 13351 cosq23lt0 13352 coseq0q4123 13353 coseq00topi 13354 coseq0negpitopi 13355 cosq34lt1 13369 cos02pilt1 13370 ioocosf1o 13373 |
Copyright terms: Public domain | W3C validator |