ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp3bi Unicode version

Theorem simp3bi 1003
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
Assertion
Ref Expression
simp3bi  |-  ( ph  ->  th )

Proof of Theorem simp3bi
StepHypRef Expression
1 3simp1bi.1 . . 3  |-  ( ph  <->  ( ps  /\  ch  /\  th ) )
21biimpi 119 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
32simp3d 1000 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 969
This theorem is referenced by:  limuni  4371  smores2  6256  ersym  6507  ertr  6510  fvixp  6663  fiintim  6888  eluzle  9472  ef01bndlem  11691  sin01bnd  11692  cos01bnd  11693  sin01gt0  11696  gznegcl  12299  gzcjcl  12300  gzaddcl  12301  gzmulcl  12302  gzabssqcl  12305  4sqlem4a  12315  ennnfonelemim  12351  reeff1oleme  13291  cosq14gt0  13351  cosq23lt0  13352  coseq0q4123  13353  coseq00topi  13354  coseq0negpitopi  13355  cosq34lt1  13369  cos02pilt1  13370  ioocosf1o  13373
  Copyright terms: Public domain W3C validator