| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3bi | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 |
|
| Ref | Expression |
|---|---|
| simp3bi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | 2 | simp3d 1035 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: limuni 4486 smores2 6438 ersym 6690 ertr 6693 fvixp 6848 en2 6971 fiintim 7089 eluzle 9730 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 sin01gt0 12268 gznegcl 12893 gzcjcl 12894 gzaddcl 12895 gzmulcl 12896 gzabssqcl 12899 4sqlem4a 12909 ennnfonelemim 12990 prdsbasprj 13310 xpsff1o 13377 subggrp 13709 srgdilem 13927 srgrz 13942 srglz 13943 ringdilem 13970 ringsrg 14005 subrngss 14158 lmodlema 14250 reeff1oleme 15440 cosq14gt0 15500 cosq23lt0 15501 coseq0q4123 15502 coseq00topi 15503 coseq0negpitopi 15504 cosq34lt1 15518 cos02pilt1 15519 ioocosf1o 15522 2sqlem2 15788 2sqlem3 15790 |
| Copyright terms: Public domain | W3C validator |