| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freccllem | Unicode version | ||
| Description: Lemma for freccl 6512. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.) |
| Ref | Expression |
|---|---|
| freccl.a |
|
| freccl.cl |
|
| freccl.b |
|
| freccllem.g |
|
| Ref | Expression |
|---|---|
| freccllem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frec 6500 |
. . . 4
| |
| 2 | freccllem.g |
. . . . 5
| |
| 3 | 2 | reseq1i 4974 |
. . . 4
|
| 4 | 1, 3 | eqtr4i 2231 |
. . 3
|
| 5 | 4 | fveq1i 5600 |
. 2
|
| 6 | freccl.b |
. . . 4
| |
| 7 | fvres 5623 |
. . . 4
| |
| 8 | 6, 7 | syl 14 |
. . 3
|
| 9 | funmpt 5328 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | ordom 4673 |
. . . . 5
| |
| 12 | 11 | a1i 9 |
. . . 4
|
| 13 | vex 2779 |
. . . . . 6
| |
| 14 | simp2 1001 |
. . . . . . 7
| |
| 15 | simp3 1002 |
. . . . . . 7
| |
| 16 | freccl.cl |
. . . . . . . . 9
| |
| 17 | 16 | ralrimiva 2581 |
. . . . . . . 8
|
| 18 | 17 | 3ad2ant1 1021 |
. . . . . . 7
|
| 19 | freccl.a |
. . . . . . . 8
| |
| 20 | 19 | 3ad2ant1 1021 |
. . . . . . 7
|
| 21 | 14, 15, 18, 20 | frecabcl 6508 |
. . . . . 6
|
| 22 | dmeq 4897 |
. . . . . . . . . . . 12
| |
| 23 | 22 | eqeq1d 2216 |
. . . . . . . . . . 11
|
| 24 | fveq1 5598 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | fveq2d 5603 |
. . . . . . . . . . . 12
|
| 26 | 25 | eleq2d 2277 |
. . . . . . . . . . 11
|
| 27 | 23, 26 | anbi12d 473 |
. . . . . . . . . 10
|
| 28 | 27 | rexbidv 2509 |
. . . . . . . . 9
|
| 29 | 22 | eqeq1d 2216 |
. . . . . . . . . 10
|
| 30 | 29 | anbi1d 465 |
. . . . . . . . 9
|
| 31 | 28, 30 | orbi12d 795 |
. . . . . . . 8
|
| 32 | 31 | abbidv 2325 |
. . . . . . 7
|
| 33 | eqid 2207 |
. . . . . . 7
| |
| 34 | 32, 33 | fvmptg 5678 |
. . . . . 6
|
| 35 | 13, 21, 34 | sylancr 414 |
. . . . 5
|
| 36 | 35, 21 | eqeltrd 2284 |
. . . 4
|
| 37 | limom 4680 |
. . . . . . 7
| |
| 38 | limuni 4461 |
. . . . . . 7
| |
| 39 | 37, 38 | ax-mp 5 |
. . . . . 6
|
| 40 | 39 | eleq2i 2274 |
. . . . 5
|
| 41 | peano2 4661 |
. . . . . 6
| |
| 42 | 41 | adantl 277 |
. . . . 5
|
| 43 | 40, 42 | sylan2br 288 |
. . . 4
|
| 44 | 6, 39 | eleqtrdi 2300 |
. . . 4
|
| 45 | 2, 10, 12, 36, 43, 44 | tfrcl 6473 |
. . 3
|
| 46 | 8, 45 | eqeltrd 2284 |
. 2
|
| 47 | 5, 46 | eqeltrid 2294 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-recs 6414 df-frec 6500 |
| This theorem is referenced by: freccl 6512 |
| Copyright terms: Public domain | W3C validator |