ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccllem Unicode version

Theorem freccllem 6546
Description: Lemma for freccl 6547. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.)
Hypotheses
Ref Expression
freccl.a  |-  ( ph  ->  A  e.  S )
freccl.cl  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
freccl.b  |-  ( ph  ->  B  e.  om )
freccllem.g  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
Assertion
Ref Expression
freccllem  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Distinct variable groups:    A, g, m, x    z, A, m, x    x, B    g, F, m, x    z, F    S, m, x, z    ph, m, x, z
Allowed substitution hints:    ph( g)    B( z,
g, m)    S( g)    G( x, z, g, m)

Proof of Theorem freccllem
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6535 . . . 4  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
2 freccllem.g . . . . 5  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
32reseq1i 5000 . . . 4  |-  ( G  |`  om )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
41, 3eqtr4i 2253 . . 3  |- frec ( F ,  A )  =  ( G  |`  om )
54fveq1i 5627 . 2  |-  (frec ( F ,  A ) `
 B )  =  ( ( G  |`  om ) `  B )
6 freccl.b . . . 4  |-  ( ph  ->  B  e.  om )
7 fvres 5650 . . . 4  |-  ( B  e.  om  ->  (
( G  |`  om ) `  B )  =  ( G `  B ) )
86, 7syl 14 . . 3  |-  ( ph  ->  ( ( G  |`  om ) `  B )  =  ( G `  B ) )
9 funmpt 5355 . . . . 5  |-  Fun  (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
109a1i 9 . . . 4  |-  ( ph  ->  Fun  ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
11 ordom 4698 . . . . 5  |-  Ord  om
1211a1i 9 . . . 4  |-  ( ph  ->  Ord  om )
13 vex 2802 . . . . . 6  |-  f  e. 
_V
14 simp2 1022 . . . . . . 7  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  y  e.  om )
15 simp3 1023 . . . . . . 7  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  f : y --> S )
16 freccl.cl . . . . . . . . 9  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
1716ralrimiva 2603 . . . . . . . 8  |-  ( ph  ->  A. z  e.  S  ( F `  z )  e.  S )
18173ad2ant1 1042 . . . . . . 7  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  A. z  e.  S  ( F `  z )  e.  S
)
19 freccl.a . . . . . . . 8  |-  ( ph  ->  A  e.  S )
20193ad2ant1 1042 . . . . . . 7  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  A  e.  S )
2114, 15, 18, 20frecabcl 6543 . . . . . 6  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )
22 dmeq 4922 . . . . . . . . . . . 12  |-  ( g  =  f  ->  dom  g  =  dom  f )
2322eqeq1d 2238 . . . . . . . . . . 11  |-  ( g  =  f  ->  ( dom  g  =  suc  m 
<->  dom  f  =  suc  m ) )
24 fveq1 5625 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  (
g `  m )  =  ( f `  m ) )
2524fveq2d 5630 . . . . . . . . . . . 12  |-  ( g  =  f  ->  ( F `  ( g `  m ) )  =  ( F `  (
f `  m )
) )
2625eleq2d 2299 . . . . . . . . . . 11  |-  ( g  =  f  ->  (
x  e.  ( F `
 ( g `  m ) )  <->  x  e.  ( F `  ( f `
 m ) ) ) )
2723, 26anbi12d 473 . . . . . . . . . 10  |-  ( g  =  f  ->  (
( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `  m
) ) ) ) )
2827rexbidv 2531 . . . . . . . . 9  |-  ( g  =  f  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) ) ) )
2922eqeq1d 2238 . . . . . . . . . 10  |-  ( g  =  f  ->  ( dom  g  =  (/)  <->  dom  f  =  (/) ) )
3029anbi1d 465 . . . . . . . . 9  |-  ( g  =  f  ->  (
( dom  g  =  (/) 
/\  x  e.  A
)  <->  ( dom  f  =  (/)  /\  x  e.  A ) ) )
3128, 30orbi12d 798 . . . . . . . 8  |-  ( g  =  f  ->  (
( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) ) )
3231abbidv 2347 . . . . . . 7  |-  ( g  =  f  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
33 eqid 2229 . . . . . . 7  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3432, 33fvmptg 5709 . . . . . 6  |-  ( ( f  e.  _V  /\  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
3513, 21, 34sylancr 414 . . . . 5  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
3635, 21eqeltrd 2306 . . . 4  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  e.  S )
37 limom 4705 . . . . . . 7  |-  Lim  om
38 limuni 4486 . . . . . . 7  |-  ( Lim 
om  ->  om  =  U. om )
3937, 38ax-mp 5 . . . . . 6  |-  om  =  U. om
4039eleq2i 2296 . . . . 5  |-  ( y  e.  om  <->  y  e.  U.
om )
41 peano2 4686 . . . . . 6  |-  ( y  e.  om  ->  suc  y  e.  om )
4241adantl 277 . . . . 5  |-  ( (
ph  /\  y  e.  om )  ->  suc  y  e. 
om )
4340, 42sylan2br 288 . . . 4  |-  ( (
ph  /\  y  e.  U.
om )  ->  suc  y  e.  om )
446, 39eleqtrdi 2322 . . . 4  |-  ( ph  ->  B  e.  U. om )
452, 10, 12, 36, 43, 44tfrcl 6508 . . 3  |-  ( ph  ->  ( G `  B
)  e.  S )
468, 45eqeltrd 2306 . 2  |-  ( ph  ->  ( ( G  |`  om ) `  B )  e.  S )
475, 46eqeltrid 2316 1  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   _Vcvv 2799   (/)c0 3491   U.cuni 3887    |-> cmpt 4144   Ord word 4452   Lim wlim 4454   suc csuc 4455   omcom 4681   dom cdm 4718    |` cres 4720   Fun wfun 5311   -->wf 5313   ` cfv 5317  recscrecs 6448  freccfrec 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-recs 6449  df-frec 6535
This theorem is referenced by:  freccl  6547
  Copyright terms: Public domain W3C validator