Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > freccllem | Unicode version |
Description: Lemma for freccl 6347. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.) |
Ref | Expression |
---|---|
freccl.a | |
freccl.cl | |
freccl.b | |
freccllem.g | recs |
Ref | Expression |
---|---|
freccllem | frec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frec 6335 | . . . 4 frec recs | |
2 | freccllem.g | . . . . 5 recs | |
3 | 2 | reseq1i 4861 | . . . 4 recs |
4 | 1, 3 | eqtr4i 2181 | . . 3 frec |
5 | 4 | fveq1i 5468 | . 2 frec |
6 | freccl.b | . . . 4 | |
7 | fvres 5491 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | funmpt 5207 | . . . . 5 | |
10 | 9 | a1i 9 | . . . 4 |
11 | ordom 4565 | . . . . 5 | |
12 | 11 | a1i 9 | . . . 4 |
13 | vex 2715 | . . . . . 6 | |
14 | simp2 983 | . . . . . . 7 | |
15 | simp3 984 | . . . . . . 7 | |
16 | freccl.cl | . . . . . . . . 9 | |
17 | 16 | ralrimiva 2530 | . . . . . . . 8 |
18 | 17 | 3ad2ant1 1003 | . . . . . . 7 |
19 | freccl.a | . . . . . . . 8 | |
20 | 19 | 3ad2ant1 1003 | . . . . . . 7 |
21 | 14, 15, 18, 20 | frecabcl 6343 | . . . . . 6 |
22 | dmeq 4785 | . . . . . . . . . . . 12 | |
23 | 22 | eqeq1d 2166 | . . . . . . . . . . 11 |
24 | fveq1 5466 | . . . . . . . . . . . . 13 | |
25 | 24 | fveq2d 5471 | . . . . . . . . . . . 12 |
26 | 25 | eleq2d 2227 | . . . . . . . . . . 11 |
27 | 23, 26 | anbi12d 465 | . . . . . . . . . 10 |
28 | 27 | rexbidv 2458 | . . . . . . . . 9 |
29 | 22 | eqeq1d 2166 | . . . . . . . . . 10 |
30 | 29 | anbi1d 461 | . . . . . . . . 9 |
31 | 28, 30 | orbi12d 783 | . . . . . . . 8 |
32 | 31 | abbidv 2275 | . . . . . . 7 |
33 | eqid 2157 | . . . . . . 7 | |
34 | 32, 33 | fvmptg 5543 | . . . . . 6 |
35 | 13, 21, 34 | sylancr 411 | . . . . 5 |
36 | 35, 21 | eqeltrd 2234 | . . . 4 |
37 | limom 4572 | . . . . . . 7 | |
38 | limuni 4356 | . . . . . . 7 | |
39 | 37, 38 | ax-mp 5 | . . . . . 6 |
40 | 39 | eleq2i 2224 | . . . . 5 |
41 | peano2 4553 | . . . . . 6 | |
42 | 41 | adantl 275 | . . . . 5 |
43 | 40, 42 | sylan2br 286 | . . . 4 |
44 | 6, 39 | eleqtrdi 2250 | . . . 4 |
45 | 2, 10, 12, 36, 43, 44 | tfrcl 6308 | . . 3 |
46 | 8, 45 | eqeltrd 2234 | . 2 |
47 | 5, 46 | eqeltrid 2244 | 1 frec |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3a 963 wceq 1335 wcel 2128 cab 2143 wral 2435 wrex 2436 cvv 2712 c0 3394 cuni 3772 cmpt 4025 word 4322 wlim 4324 csuc 4325 com 4548 cdm 4585 cres 4587 wfun 5163 wf 5165 cfv 5169 recscrecs 6248 freccfrec 6334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-recs 6249 df-frec 6335 |
This theorem is referenced by: freccl 6347 |
Copyright terms: Public domain | W3C validator |