| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freccllem | Unicode version | ||
| Description: Lemma for freccl 6547. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.) |
| Ref | Expression |
|---|---|
| freccl.a |
|
| freccl.cl |
|
| freccl.b |
|
| freccllem.g |
|
| Ref | Expression |
|---|---|
| freccllem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frec 6535 |
. . . 4
| |
| 2 | freccllem.g |
. . . . 5
| |
| 3 | 2 | reseq1i 5000 |
. . . 4
|
| 4 | 1, 3 | eqtr4i 2253 |
. . 3
|
| 5 | 4 | fveq1i 5627 |
. 2
|
| 6 | freccl.b |
. . . 4
| |
| 7 | fvres 5650 |
. . . 4
| |
| 8 | 6, 7 | syl 14 |
. . 3
|
| 9 | funmpt 5355 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | ordom 4698 |
. . . . 5
| |
| 12 | 11 | a1i 9 |
. . . 4
|
| 13 | vex 2802 |
. . . . . 6
| |
| 14 | simp2 1022 |
. . . . . . 7
| |
| 15 | simp3 1023 |
. . . . . . 7
| |
| 16 | freccl.cl |
. . . . . . . . 9
| |
| 17 | 16 | ralrimiva 2603 |
. . . . . . . 8
|
| 18 | 17 | 3ad2ant1 1042 |
. . . . . . 7
|
| 19 | freccl.a |
. . . . . . . 8
| |
| 20 | 19 | 3ad2ant1 1042 |
. . . . . . 7
|
| 21 | 14, 15, 18, 20 | frecabcl 6543 |
. . . . . 6
|
| 22 | dmeq 4922 |
. . . . . . . . . . . 12
| |
| 23 | 22 | eqeq1d 2238 |
. . . . . . . . . . 11
|
| 24 | fveq1 5625 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | fveq2d 5630 |
. . . . . . . . . . . 12
|
| 26 | 25 | eleq2d 2299 |
. . . . . . . . . . 11
|
| 27 | 23, 26 | anbi12d 473 |
. . . . . . . . . 10
|
| 28 | 27 | rexbidv 2531 |
. . . . . . . . 9
|
| 29 | 22 | eqeq1d 2238 |
. . . . . . . . . 10
|
| 30 | 29 | anbi1d 465 |
. . . . . . . . 9
|
| 31 | 28, 30 | orbi12d 798 |
. . . . . . . 8
|
| 32 | 31 | abbidv 2347 |
. . . . . . 7
|
| 33 | eqid 2229 |
. . . . . . 7
| |
| 34 | 32, 33 | fvmptg 5709 |
. . . . . 6
|
| 35 | 13, 21, 34 | sylancr 414 |
. . . . 5
|
| 36 | 35, 21 | eqeltrd 2306 |
. . . 4
|
| 37 | limom 4705 |
. . . . . . 7
| |
| 38 | limuni 4486 |
. . . . . . 7
| |
| 39 | 37, 38 | ax-mp 5 |
. . . . . 6
|
| 40 | 39 | eleq2i 2296 |
. . . . 5
|
| 41 | peano2 4686 |
. . . . . 6
| |
| 42 | 41 | adantl 277 |
. . . . 5
|
| 43 | 40, 42 | sylan2br 288 |
. . . 4
|
| 44 | 6, 39 | eleqtrdi 2322 |
. . . 4
|
| 45 | 2, 10, 12, 36, 43, 44 | tfrcl 6508 |
. . 3
|
| 46 | 8, 45 | eqeltrd 2306 |
. 2
|
| 47 | 5, 46 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-recs 6449 df-frec 6535 |
| This theorem is referenced by: freccl 6547 |
| Copyright terms: Public domain | W3C validator |