ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccllem Unicode version

Theorem freccllem 6511
Description: Lemma for freccl 6512. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.)
Hypotheses
Ref Expression
freccl.a  |-  ( ph  ->  A  e.  S )
freccl.cl  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
freccl.b  |-  ( ph  ->  B  e.  om )
freccllem.g  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
Assertion
Ref Expression
freccllem  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Distinct variable groups:    A, g, m, x    z, A, m, x    x, B    g, F, m, x    z, F    S, m, x, z    ph, m, x, z
Allowed substitution hints:    ph( g)    B( z,
g, m)    S( g)    G( x, z, g, m)

Proof of Theorem freccllem
Dummy variables  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6500 . . . 4  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
2 freccllem.g . . . . 5  |-  G  = recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
32reseq1i 4974 . . . 4  |-  ( G  |`  om )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
41, 3eqtr4i 2231 . . 3  |- frec ( F ,  A )  =  ( G  |`  om )
54fveq1i 5600 . 2  |-  (frec ( F ,  A ) `
 B )  =  ( ( G  |`  om ) `  B )
6 freccl.b . . . 4  |-  ( ph  ->  B  e.  om )
7 fvres 5623 . . . 4  |-  ( B  e.  om  ->  (
( G  |`  om ) `  B )  =  ( G `  B ) )
86, 7syl 14 . . 3  |-  ( ph  ->  ( ( G  |`  om ) `  B )  =  ( G `  B ) )
9 funmpt 5328 . . . . 5  |-  Fun  (
g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
109a1i 9 . . . 4  |-  ( ph  ->  Fun  ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
11 ordom 4673 . . . . 5  |-  Ord  om
1211a1i 9 . . . 4  |-  ( ph  ->  Ord  om )
13 vex 2779 . . . . . 6  |-  f  e. 
_V
14 simp2 1001 . . . . . . 7  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  y  e.  om )
15 simp3 1002 . . . . . . 7  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  f : y --> S )
16 freccl.cl . . . . . . . . 9  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
1716ralrimiva 2581 . . . . . . . 8  |-  ( ph  ->  A. z  e.  S  ( F `  z )  e.  S )
18173ad2ant1 1021 . . . . . . 7  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  A. z  e.  S  ( F `  z )  e.  S
)
19 freccl.a . . . . . . . 8  |-  ( ph  ->  A  e.  S )
20193ad2ant1 1021 . . . . . . 7  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  A  e.  S )
2114, 15, 18, 20frecabcl 6508 . . . . . 6  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )
22 dmeq 4897 . . . . . . . . . . . 12  |-  ( g  =  f  ->  dom  g  =  dom  f )
2322eqeq1d 2216 . . . . . . . . . . 11  |-  ( g  =  f  ->  ( dom  g  =  suc  m 
<->  dom  f  =  suc  m ) )
24 fveq1 5598 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  (
g `  m )  =  ( f `  m ) )
2524fveq2d 5603 . . . . . . . . . . . 12  |-  ( g  =  f  ->  ( F `  ( g `  m ) )  =  ( F `  (
f `  m )
) )
2625eleq2d 2277 . . . . . . . . . . 11  |-  ( g  =  f  ->  (
x  e.  ( F `
 ( g `  m ) )  <->  x  e.  ( F `  ( f `
 m ) ) ) )
2723, 26anbi12d 473 . . . . . . . . . 10  |-  ( g  =  f  ->  (
( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  <->  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `  m
) ) ) ) )
2827rexbidv 2509 . . . . . . . . 9  |-  ( g  =  f  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) ) ) )
2922eqeq1d 2216 . . . . . . . . . 10  |-  ( g  =  f  ->  ( dom  g  =  (/)  <->  dom  f  =  (/) ) )
3029anbi1d 465 . . . . . . . . 9  |-  ( g  =  f  ->  (
( dom  g  =  (/) 
/\  x  e.  A
)  <->  ( dom  f  =  (/)  /\  x  e.  A ) ) )
3128, 30orbi12d 795 . . . . . . . 8  |-  ( g  =  f  ->  (
( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) ) )
3231abbidv 2325 . . . . . . 7  |-  ( g  =  f  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
33 eqid 2207 . . . . . . 7  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3432, 33fvmptg 5678 . . . . . 6  |-  ( ( f  e.  _V  /\  { x  |  ( E. m  e.  om  ( dom  f  =  suc  m  /\  x  e.  ( F `  ( f `
 m ) ) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) }  e.  S )  -> 
( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
3513, 21, 34sylancr 414 . . . . 5  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  =  { x  |  ( E. m  e. 
om  ( dom  f  =  suc  m  /\  x  e.  ( F `  (
f `  m )
) )  \/  ( dom  f  =  (/)  /\  x  e.  A ) ) } )
3635, 21eqeltrd 2284 . . . 4  |-  ( (
ph  /\  y  e.  om 
/\  f : y --> S )  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  f )  e.  S )
37 limom 4680 . . . . . . 7  |-  Lim  om
38 limuni 4461 . . . . . . 7  |-  ( Lim 
om  ->  om  =  U. om )
3937, 38ax-mp 5 . . . . . 6  |-  om  =  U. om
4039eleq2i 2274 . . . . 5  |-  ( y  e.  om  <->  y  e.  U.
om )
41 peano2 4661 . . . . . 6  |-  ( y  e.  om  ->  suc  y  e.  om )
4241adantl 277 . . . . 5  |-  ( (
ph  /\  y  e.  om )  ->  suc  y  e. 
om )
4340, 42sylan2br 288 . . . 4  |-  ( (
ph  /\  y  e.  U.
om )  ->  suc  y  e.  om )
446, 39eleqtrdi 2300 . . . 4  |-  ( ph  ->  B  e.  U. om )
452, 10, 12, 36, 43, 44tfrcl 6473 . . 3  |-  ( ph  ->  ( G `  B
)  e.  S )
468, 45eqeltrd 2284 . 2  |-  ( ph  ->  ( ( G  |`  om ) `  B )  e.  S )
475, 46eqeltrid 2294 1  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   _Vcvv 2776   (/)c0 3468   U.cuni 3864    |-> cmpt 4121   Ord word 4427   Lim wlim 4429   suc csuc 4430   omcom 4656   dom cdm 4693    |` cres 4695   Fun wfun 5284   -->wf 5286   ` cfv 5290  recscrecs 6413  freccfrec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-recs 6414  df-frec 6500
This theorem is referenced by:  freccl  6512
  Copyright terms: Public domain W3C validator