| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freccllem | Unicode version | ||
| Description: Lemma for freccl 6489. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 27-Mar-2022.) |
| Ref | Expression |
|---|---|
| freccl.a |
|
| freccl.cl |
|
| freccl.b |
|
| freccllem.g |
|
| Ref | Expression |
|---|---|
| freccllem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frec 6477 |
. . . 4
| |
| 2 | freccllem.g |
. . . . 5
| |
| 3 | 2 | reseq1i 4955 |
. . . 4
|
| 4 | 1, 3 | eqtr4i 2229 |
. . 3
|
| 5 | 4 | fveq1i 5577 |
. 2
|
| 6 | freccl.b |
. . . 4
| |
| 7 | fvres 5600 |
. . . 4
| |
| 8 | 6, 7 | syl 14 |
. . 3
|
| 9 | funmpt 5309 |
. . . . 5
| |
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | ordom 4655 |
. . . . 5
| |
| 12 | 11 | a1i 9 |
. . . 4
|
| 13 | vex 2775 |
. . . . . 6
| |
| 14 | simp2 1001 |
. . . . . . 7
| |
| 15 | simp3 1002 |
. . . . . . 7
| |
| 16 | freccl.cl |
. . . . . . . . 9
| |
| 17 | 16 | ralrimiva 2579 |
. . . . . . . 8
|
| 18 | 17 | 3ad2ant1 1021 |
. . . . . . 7
|
| 19 | freccl.a |
. . . . . . . 8
| |
| 20 | 19 | 3ad2ant1 1021 |
. . . . . . 7
|
| 21 | 14, 15, 18, 20 | frecabcl 6485 |
. . . . . 6
|
| 22 | dmeq 4878 |
. . . . . . . . . . . 12
| |
| 23 | 22 | eqeq1d 2214 |
. . . . . . . . . . 11
|
| 24 | fveq1 5575 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | fveq2d 5580 |
. . . . . . . . . . . 12
|
| 26 | 25 | eleq2d 2275 |
. . . . . . . . . . 11
|
| 27 | 23, 26 | anbi12d 473 |
. . . . . . . . . 10
|
| 28 | 27 | rexbidv 2507 |
. . . . . . . . 9
|
| 29 | 22 | eqeq1d 2214 |
. . . . . . . . . 10
|
| 30 | 29 | anbi1d 465 |
. . . . . . . . 9
|
| 31 | 28, 30 | orbi12d 795 |
. . . . . . . 8
|
| 32 | 31 | abbidv 2323 |
. . . . . . 7
|
| 33 | eqid 2205 |
. . . . . . 7
| |
| 34 | 32, 33 | fvmptg 5655 |
. . . . . 6
|
| 35 | 13, 21, 34 | sylancr 414 |
. . . . 5
|
| 36 | 35, 21 | eqeltrd 2282 |
. . . 4
|
| 37 | limom 4662 |
. . . . . . 7
| |
| 38 | limuni 4443 |
. . . . . . 7
| |
| 39 | 37, 38 | ax-mp 5 |
. . . . . 6
|
| 40 | 39 | eleq2i 2272 |
. . . . 5
|
| 41 | peano2 4643 |
. . . . . 6
| |
| 42 | 41 | adantl 277 |
. . . . 5
|
| 43 | 40, 42 | sylan2br 288 |
. . . 4
|
| 44 | 6, 39 | eleqtrdi 2298 |
. . . 4
|
| 45 | 2, 10, 12, 36, 43, 44 | tfrcl 6450 |
. . 3
|
| 46 | 8, 45 | eqeltrd 2282 |
. 2
|
| 47 | 5, 46 | eqeltrid 2292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-recs 6391 df-frec 6477 |
| This theorem is referenced by: freccl 6489 |
| Copyright terms: Public domain | W3C validator |