ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncongr2 Unicode version

Theorem cncongr2 12104
Description: The other direction of the bicondition in cncongr 12105. (Contributed by AV, 11-Jul-2021.)
Assertion
Ref Expression
cncongr2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) )

Proof of Theorem cncongr2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpll3 1038 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  C  e.  ZZ )
2 0z 9264 . . . . . . 7  |-  0  e.  ZZ
3 zdceq 9328 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  0  e.  ZZ )  -> DECID  C  =  0 )
42, 3mpan2 425 . . . . . 6  |-  ( C  e.  ZZ  -> DECID  C  =  0
)
5 exmiddc 836 . . . . . 6  |-  (DECID  C  =  0  ->  ( C  =  0  \/  -.  C  =  0 ) )
64, 5syl 14 . . . . 5  |-  ( C  e.  ZZ  ->  ( C  =  0  \/  -.  C  =  0
) )
7 df-ne 2348 . . . . . 6  |-  ( C  =/=  0  <->  -.  C  =  0 )
87orbi2i 762 . . . . 5  |-  ( ( C  =  0  \/  C  =/=  0 )  <-> 
( C  =  0  \/  -.  C  =  0 ) )
96, 8sylibr 134 . . . 4  |-  ( C  e.  ZZ  ->  ( C  =  0  \/  C  =/=  0 ) )
10 zcn 9258 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  A  e.  CC )
1110mul01d 8350 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( A  x.  0 )  =  0 )
12113ad2ant1 1018 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  0 )  =  0 )
13 zcn 9258 . . . . . . . . . . . 12  |-  ( B  e.  ZZ  ->  B  e.  CC )
1413mul01d 8350 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  ( B  x.  0 )  =  0 )
15143ad2ant2 1019 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  0 )  =  0 )
1612, 15eqtr4d 2213 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  0 )  =  ( B  x.  0 ) )
1716adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( A  x.  0 )  =  ( B  x.  0 ) )
1817oveq1d 5890 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  x.  0 )  mod 
N )  =  ( ( B  x.  0 )  mod  N ) )
1918adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  0 )  mod 
N )  =  ( ( B  x.  0 )  mod  N ) )
20 oveq2 5883 . . . . . . . 8  |-  ( C  =  0  ->  ( A  x.  C )  =  ( A  x.  0 ) )
2120oveq1d 5890 . . . . . . 7  |-  ( C  =  0  ->  (
( A  x.  C
)  mod  N )  =  ( ( A  x.  0 )  mod 
N ) )
22 oveq2 5883 . . . . . . . 8  |-  ( C  =  0  ->  ( B  x.  C )  =  ( B  x.  0 ) )
2322oveq1d 5890 . . . . . . 7  |-  ( C  =  0  ->  (
( B  x.  C
)  mod  N )  =  ( ( B  x.  0 )  mod 
N ) )
2421, 23eqeq12d 2192 . . . . . 6  |-  ( C  =  0  ->  (
( ( A  x.  C )  mod  N
)  =  ( ( B  x.  C )  mod  N )  <->  ( ( A  x.  0 )  mod  N )  =  ( ( B  x.  0 )  mod  N
) ) )
2519, 24imbitrrid 156 . . . . 5  |-  ( C  =  0  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
) )
26 oveq2 5883 . . . . . . . . . . . 12  |-  ( M  =  ( N  / 
( C  gcd  N
) )  ->  ( A  mod  M )  =  ( A  mod  ( N  /  ( C  gcd  N ) ) ) )
27 oveq2 5883 . . . . . . . . . . . 12  |-  ( M  =  ( N  / 
( C  gcd  N
) )  ->  ( B  mod  M )  =  ( B  mod  ( N  /  ( C  gcd  N ) ) ) )
2826, 27eqeq12d 2192 . . . . . . . . . . 11  |-  ( M  =  ( N  / 
( C  gcd  N
) )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  ( A  mod  ( N  /  ( C  gcd  N ) ) )  =  ( B  mod  ( N  / 
( C  gcd  N
) ) ) ) )
2928adantl 277 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  -> 
( ( A  mod  M )  =  ( B  mod  M )  <->  ( A  mod  ( N  /  ( C  gcd  N ) ) )  =  ( B  mod  ( N  / 
( C  gcd  N
) ) ) ) )
3029adantl 277 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( A  mod  ( N  /  ( C  gcd  N ) ) )  =  ( B  mod  ( N  / 
( C  gcd  N
) ) ) ) )
31 simpl 109 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  ->  N  e.  NN )
32 simp3 999 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  ZZ )
33 divgcdnnr 11977 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  C  e.  ZZ )  ->  ( N  /  ( C  gcd  N ) )  e.  NN )
3431, 32, 33syl2anr 290 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( N  / 
( C  gcd  N
) )  e.  NN )
35 simpl1 1000 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  A  e.  ZZ )
36 simpl2 1001 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  B  e.  ZZ )
37 moddvds 11806 . . . . . . . . . 10  |-  ( ( ( N  /  ( C  gcd  N ) )  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  ( N  /  ( C  gcd  N ) ) )  =  ( B  mod  ( N  /  ( C  gcd  N ) ) )  <->  ( N  /  ( C  gcd  N ) )  ||  ( A  -  B )
) )
3834, 35, 36, 37syl3anc 1238 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  ( N  / 
( C  gcd  N
) ) )  =  ( B  mod  ( N  /  ( C  gcd  N ) ) )  <->  ( N  /  ( C  gcd  N ) )  ||  ( A  -  B )
) )
3934nnzd 9374 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( N  / 
( C  gcd  N
) )  e.  ZZ )
40 zsubcl 9294 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
41403adant3 1017 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  -  B )  e.  ZZ )
4241adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( A  -  B )  e.  ZZ )
43 divides 11796 . . . . . . . . . 10  |-  ( ( ( N  /  ( C  gcd  N ) )  e.  ZZ  /\  ( A  -  B )  e.  ZZ )  ->  (
( N  /  ( C  gcd  N ) ) 
||  ( A  -  B )  <->  E. k  e.  ZZ  ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B ) ) )
4439, 42, 43syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( N  /  ( C  gcd  N ) )  ||  ( A  -  B )  <->  E. k  e.  ZZ  (
k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
) ) )
4530, 38, 443bitrd 214 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  E. k  e.  ZZ  ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
) ) )
46 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  k  e.  ZZ )
4739adantr 276 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( N  /  ( C  gcd  N ) )  e.  ZZ )
4847adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( N  /  ( C  gcd  N ) )  e.  ZZ )
4946, 48zmulcld 9381 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( k  x.  ( N  / 
( C  gcd  N
) ) )  e.  ZZ )
5049zcnd 9376 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( k  x.  ( N  / 
( C  gcd  N
) ) )  e.  CC )
5140zcnd 9376 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  CC )
52513adant3 1017 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  -  B )  e.  CC )
5352ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( A  -  B )  e.  CC )
5432zcnd 9376 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  CC )
5554ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  C  e.  CC )
56 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  C  =/=  0 )
5756adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  C  =/=  0 )
5832ad3antrrr 492 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  C  e.  ZZ )
59 0zd 9265 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  0  e.  ZZ )
60 zapne 9327 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  ZZ  /\  0  e.  ZZ )  ->  ( C #  0  <->  C  =/=  0 ) )
6158, 59, 60syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( C #  0  <->  C  =/=  0
) )
6257, 61mpbird 167 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  C #  0 )
6350, 53, 55, 62mulcanap2d 8619 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  -  B
)  x.  C )  <-> 
( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
) ) )
64 zcn 9258 . . . . . . . . . . . . . . . . 17  |-  ( C  e.  ZZ  ->  C  e.  CC )
65 subdir 8343 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) )
6610, 13, 64, 65syl3an 1280 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  -  B
)  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) )
6766ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( A  -  B )  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C )
) )
6867eqeq2d 2189 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  -  B
)  x.  C )  <-> 
( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) ) )
6963, 68bitr3d 190 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  <->  ( ( k  x.  ( N  / 
( C  gcd  N
) ) )  x.  C )  =  ( ( A  x.  C
)  -  ( B  x.  C ) ) ) )
70 nnz 9272 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN  ->  N  e.  ZZ )
7170adantr 276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  N  e.  ZZ )
72 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  k  e.  ZZ )
7372zcnd 9376 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  k  e.  CC )
7473adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  k  e.  CC )
7554adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  C  e.  CC )
76 simpl 109 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  N  e.  NN )
7776nnzd 9374 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  N  e.  ZZ )
7832, 77anim12i 338 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  e.  ZZ  /\  N  e.  ZZ ) )
79 gcdcl 11967 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ )  ->  ( C  gcd  N
)  e.  NN0 )
8078, 79syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N )  e.  NN0 )
8180nn0cnd 9231 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N )  e.  CC )
82 nnne0 8947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  NN  ->  N  =/=  0 )
8382neneqd 2368 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN  ->  -.  N  =  0 )
8483adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  -.  N  =  0 )
8584adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  -.  N  =  0 )
8685intnand 931 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  -.  ( C  =  0  /\  N  =  0 ) )
87 gcdeq0 11978 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( C  gcd  N )  =  0  <->  ( C  =  0  /\  N  =  0 ) ) )
8878, 87syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( ( C  gcd  N )  =  0  <->  ( C  =  0  /\  N  =  0 ) ) )
8988necon3abid 2386 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( ( C  gcd  N )  =/=  0  <->  -.  ( C  =  0  /\  N  =  0 ) ) )
9086, 89mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N )  =/=  0
)
9180nn0zd 9373 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N )  e.  ZZ )
92 0zd 9265 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  0  e.  ZZ )
93 zapne 9327 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( C  gcd  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( C  gcd  N ) #  0  <->  ( C  gcd  N )  =/=  0
) )
9491, 92, 93syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( ( C  gcd  N ) #  0  <-> 
( C  gcd  N
)  =/=  0 ) )
9590, 94mpbird 167 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N ) #  0 )
9674, 75, 81, 95divassapd 8783 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( (
k  x.  C )  /  ( C  gcd  N ) )  =  ( k  x.  ( C  /  ( C  gcd  N ) ) ) )
9772adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  k  e.  ZZ )
9870, 82jca 306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN  ->  ( N  e.  ZZ  /\  N  =/=  0 ) )
9998adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  ( N  e.  ZZ  /\  N  =/=  0 ) )
10032, 99anim12i 338 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) ) )
101 3anass 982 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  <->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) ) )
102100, 101sylibr 134 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) )
103 divgcdz 11972 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( C  /  ( C  gcd  N ) )  e.  ZZ )
104102, 103syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  /  ( C  gcd  N ) )  e.  ZZ )
10597, 104zmulcld 9381 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( k  x.  ( C  /  ( C  gcd  N ) ) )  e.  ZZ )
10696, 105eqeltrd 2254 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( (
k  x.  C )  /  ( C  gcd  N ) )  e.  ZZ )
107 dvdsmul1 11820 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  ZZ  /\  ( ( k  x.  C )  /  ( C  gcd  N ) )  e.  ZZ )  ->  N  ||  ( N  x.  ( ( k  x.  C )  /  ( C  gcd  N ) ) ) )
10871, 106, 107syl2an2 594 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  N  ||  ( N  x.  ( (
k  x.  C )  /  ( C  gcd  N ) ) ) )
10976nncnd 8933 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  N  e.  CC )
110109adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  N  e.  CC )
111 divmulasscomap 8653 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( k  e.  CC  /\  N  e.  CC  /\  C  e.  CC )  /\  ( ( C  gcd  N )  e.  CC  /\  ( C  gcd  N ) #  0 ) )  -> 
( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( N  x.  ( ( k  x.  C )  /  ( C  gcd  N ) ) ) )
11274, 110, 75, 81, 95, 111syl32anc 1246 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( (
k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( N  x.  ( ( k  x.  C )  /  ( C  gcd  N ) ) ) )
113108, 112breqtrrd 4032 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  N  ||  (
( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) )
114113exp32 365 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( N  e.  NN  ->  ( k  e.  ZZ  ->  N 
||  ( ( k  x.  ( N  / 
( C  gcd  N
) ) )  x.  C ) ) ) )
115114adantrd 279 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  -> 
( k  e.  ZZ  ->  N  ||  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) ) ) )
116115imp 124 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( k  e.  ZZ  ->  N  ||  (
( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) ) )
117116adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( k  e.  ZZ  ->  N  ||  (
( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) ) )
118117imp 124 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  N  ||  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) )
119 breq2 4008 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  x.  C
)  -  ( B  x.  C ) )  ->  ( N  ||  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  <-> 
N  ||  ( ( A  x.  C )  -  ( B  x.  C ) ) ) )
120118, 119syl5ibcom 155 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  x.  C
)  -  ( B  x.  C ) )  ->  N  ||  (
( A  x.  C
)  -  ( B  x.  C ) ) ) )
12169, 120sylbid 150 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  ->  N  ||  (
( A  x.  C
)  -  ( B  x.  C ) ) ) )
122121rexlimdva 2594 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( E. k  e.  ZZ  (
k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  ->  N  ||  (
( A  x.  C
)  -  ( B  x.  C ) ) ) )
12331adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  N  e.  NN )
124 zmulcl 9306 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  C
)  e.  ZZ )
1251243adant2 1016 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  C )  e.  ZZ )
126125adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( A  x.  C )  e.  ZZ )
127 zmulcl 9306 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  C
)  e.  ZZ )
1281273adant1 1015 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  C )  e.  ZZ )
129128adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( B  x.  C )  e.  ZZ )
130 moddvds 11806 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  x.  C
)  e.  ZZ  /\  ( B  x.  C
)  e.  ZZ )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  <->  N  ||  ( ( A  x.  C )  -  ( B  x.  C ) ) ) )
131123, 126, 129, 130syl3anc 1238 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  <->  N  ||  ( ( A  x.  C )  -  ( B  x.  C ) ) ) )
132131adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( (
( A  x.  C
)  mod  N )  =  ( ( B  x.  C )  mod 
N )  <->  N  ||  (
( A  x.  C
)  -  ( B  x.  C ) ) ) )
133122, 132sylibrd 169 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( E. k  e.  ZZ  (
k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) )
134133ex 115 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( C  =/=  0  ->  ( E. k  e.  ZZ  (
k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) ) )
135134com23 78 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( E. k  e.  ZZ  ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B )  -> 
( C  =/=  0  ->  ( ( A  x.  C )  mod  N
)  =  ( ( B  x.  C )  mod  N ) ) ) )
13645, 135sylbid 150 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  ->  ( C  =/=  0  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
) ) ) )
137136imp 124 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( C  =/=  0  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) )
138137com12 30 . . . . 5  |-  ( C  =/=  0  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
) )
13925, 138jaoi 716 . . . 4  |-  ( ( C  =  0  \/  C  =/=  0 )  ->  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
) )
1409, 139syl 14 . . 3  |-  ( C  e.  ZZ  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
) )
1411, 140mpcom 36 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
)
142141ex 115 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   E.wrex 2456   class class class wbr 4004  (class class class)co 5875   CCcc 7809   0cc0 7811    x. cmul 7816    - cmin 8128   # cap 8538    / cdiv 8629   NNcn 8919   NN0cn0 9176   ZZcz 9253    mod cmo 10322    || cdvds 11794    gcd cgcd 11943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-sup 6983  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-dvds 11795  df-gcd 11944
This theorem is referenced by:  cncongr  12105
  Copyright terms: Public domain W3C validator