ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncongr2 Unicode version

Theorem cncongr2 11513
Description: The other direction of the bicondition in cncongr 11514. (Contributed by AV, 11-Jul-2021.)
Assertion
Ref Expression
cncongr2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) )

Proof of Theorem cncongr2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpll3 987 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  C  e.  ZZ )
2 0z 8859 . . . . . . 7  |-  0  e.  ZZ
3 zdceq 8920 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  0  e.  ZZ )  -> DECID  C  =  0 )
42, 3mpan2 417 . . . . . 6  |-  ( C  e.  ZZ  -> DECID  C  =  0
)
5 exmiddc 785 . . . . . 6  |-  (DECID  C  =  0  ->  ( C  =  0  \/  -.  C  =  0 ) )
64, 5syl 14 . . . . 5  |-  ( C  e.  ZZ  ->  ( C  =  0  \/  -.  C  =  0
) )
7 df-ne 2263 . . . . . 6  |-  ( C  =/=  0  <->  -.  C  =  0 )
87orbi2i 717 . . . . 5  |-  ( ( C  =  0  \/  C  =/=  0 )  <-> 
( C  =  0  \/  -.  C  =  0 ) )
96, 8sylibr 133 . . . 4  |-  ( C  e.  ZZ  ->  ( C  =  0  \/  C  =/=  0 ) )
10 zcn 8853 . . . . . . . . . . . 12  |-  ( A  e.  ZZ  ->  A  e.  CC )
1110mul01d 7968 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( A  x.  0 )  =  0 )
12113ad2ant1 967 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  0 )  =  0 )
13 zcn 8853 . . . . . . . . . . . 12  |-  ( B  e.  ZZ  ->  B  e.  CC )
1413mul01d 7968 . . . . . . . . . . 11  |-  ( B  e.  ZZ  ->  ( B  x.  0 )  =  0 )
15143ad2ant2 968 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  0 )  =  0 )
1612, 15eqtr4d 2130 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  0 )  =  ( B  x.  0 ) )
1716adantr 271 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( A  x.  0 )  =  ( B  x.  0 ) )
1817oveq1d 5705 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  x.  0 )  mod 
N )  =  ( ( B  x.  0 )  mod  N ) )
1918adantr 271 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  0 )  mod 
N )  =  ( ( B  x.  0 )  mod  N ) )
20 oveq2 5698 . . . . . . . 8  |-  ( C  =  0  ->  ( A  x.  C )  =  ( A  x.  0 ) )
2120oveq1d 5705 . . . . . . 7  |-  ( C  =  0  ->  (
( A  x.  C
)  mod  N )  =  ( ( A  x.  0 )  mod 
N ) )
22 oveq2 5698 . . . . . . . 8  |-  ( C  =  0  ->  ( B  x.  C )  =  ( B  x.  0 ) )
2322oveq1d 5705 . . . . . . 7  |-  ( C  =  0  ->  (
( B  x.  C
)  mod  N )  =  ( ( B  x.  0 )  mod 
N ) )
2421, 23eqeq12d 2109 . . . . . 6  |-  ( C  =  0  ->  (
( ( A  x.  C )  mod  N
)  =  ( ( B  x.  C )  mod  N )  <->  ( ( A  x.  0 )  mod  N )  =  ( ( B  x.  0 )  mod  N
) ) )
2519, 24syl5ibr 155 . . . . 5  |-  ( C  =  0  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
) )
26 oveq2 5698 . . . . . . . . . . . 12  |-  ( M  =  ( N  / 
( C  gcd  N
) )  ->  ( A  mod  M )  =  ( A  mod  ( N  /  ( C  gcd  N ) ) ) )
27 oveq2 5698 . . . . . . . . . . . 12  |-  ( M  =  ( N  / 
( C  gcd  N
) )  ->  ( B  mod  M )  =  ( B  mod  ( N  /  ( C  gcd  N ) ) ) )
2826, 27eqeq12d 2109 . . . . . . . . . . 11  |-  ( M  =  ( N  / 
( C  gcd  N
) )  ->  (
( A  mod  M
)  =  ( B  mod  M )  <->  ( A  mod  ( N  /  ( C  gcd  N ) ) )  =  ( B  mod  ( N  / 
( C  gcd  N
) ) ) ) )
2928adantl 272 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  -> 
( ( A  mod  M )  =  ( B  mod  M )  <->  ( A  mod  ( N  /  ( C  gcd  N ) ) )  =  ( B  mod  ( N  / 
( C  gcd  N
) ) ) ) )
3029adantl 272 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  ( A  mod  ( N  /  ( C  gcd  N ) ) )  =  ( B  mod  ( N  / 
( C  gcd  N
) ) ) ) )
31 simpl 108 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  ->  N  e.  NN )
32 simp3 948 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  ZZ )
33 divgcdnnr 11394 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  C  e.  ZZ )  ->  ( N  /  ( C  gcd  N ) )  e.  NN )
3431, 32, 33syl2anr 285 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( N  / 
( C  gcd  N
) )  e.  NN )
35 simpl1 949 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  A  e.  ZZ )
36 simpl2 950 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  B  e.  ZZ )
37 moddvds 11232 . . . . . . . . . 10  |-  ( ( ( N  /  ( C  gcd  N ) )  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  ( N  /  ( C  gcd  N ) ) )  =  ( B  mod  ( N  /  ( C  gcd  N ) ) )  <->  ( N  /  ( C  gcd  N ) )  ||  ( A  -  B )
) )
3834, 35, 36, 37syl3anc 1181 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  ( N  / 
( C  gcd  N
) ) )  =  ( B  mod  ( N  /  ( C  gcd  N ) ) )  <->  ( N  /  ( C  gcd  N ) )  ||  ( A  -  B )
) )
3934nnzd 8966 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( N  / 
( C  gcd  N
) )  e.  ZZ )
40 zsubcl 8889 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
41403adant3 966 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  -  B )  e.  ZZ )
4241adantr 271 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( A  -  B )  e.  ZZ )
43 divides 11225 . . . . . . . . . 10  |-  ( ( ( N  /  ( C  gcd  N ) )  e.  ZZ  /\  ( A  -  B )  e.  ZZ )  ->  (
( N  /  ( C  gcd  N ) ) 
||  ( A  -  B )  <->  E. k  e.  ZZ  ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B ) ) )
4439, 42, 43syl2anc 404 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( N  /  ( C  gcd  N ) )  ||  ( A  -  B )  <->  E. k  e.  ZZ  (
k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
) ) )
4530, 38, 443bitrd 213 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  <->  E. k  e.  ZZ  ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
) ) )
46 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  k  e.  ZZ )
4739adantr 271 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( N  /  ( C  gcd  N ) )  e.  ZZ )
4847adantr 271 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( N  /  ( C  gcd  N ) )  e.  ZZ )
4946, 48zmulcld 8973 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( k  x.  ( N  / 
( C  gcd  N
) ) )  e.  ZZ )
5049zcnd 8968 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( k  x.  ( N  / 
( C  gcd  N
) ) )  e.  CC )
5140zcnd 8968 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  CC )
52513adant3 966 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  -  B )  e.  CC )
5352ad3antrrr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( A  -  B )  e.  CC )
5432zcnd 8968 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  C  e.  CC )
5554ad3antrrr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  C  e.  CC )
56 simpr 109 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  C  =/=  0 )
5756adantr 271 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  C  =/=  0 )
5832ad3antrrr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  C  e.  ZZ )
59 0zd 8860 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  0  e.  ZZ )
60 zapne 8919 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  ZZ  /\  0  e.  ZZ )  ->  ( C #  0  <->  C  =/=  0 ) )
6158, 59, 60syl2anc 404 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( C #  0  <->  C  =/=  0
) )
6257, 61mpbird 166 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  C #  0 )
6350, 53, 55, 62mulcanap2d 8228 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  -  B
)  x.  C )  <-> 
( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
) ) )
64 zcn 8853 . . . . . . . . . . . . . . . . 17  |-  ( C  e.  ZZ  ->  C  e.  CC )
65 subdir 7961 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) )
6610, 13, 64, 65syl3an 1223 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  -  B
)  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) )
6766ad3antrrr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( A  -  B )  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C )
) )
6867eqeq2d 2106 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  -  B
)  x.  C )  <-> 
( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  x.  C )  -  ( B  x.  C
) ) ) )
6963, 68bitr3d 189 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  <->  ( ( k  x.  ( N  / 
( C  gcd  N
) ) )  x.  C )  =  ( ( A  x.  C
)  -  ( B  x.  C ) ) ) )
70 nnz 8867 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN  ->  N  e.  ZZ )
7170adantr 271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  N  e.  ZZ )
72 simpr 109 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  k  e.  ZZ )
7372zcnd 8968 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  k  e.  CC )
7473adantl 272 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  k  e.  CC )
7554adantr 271 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  C  e.  CC )
76 simpl 108 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  N  e.  NN )
7776nnzd 8966 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  N  e.  ZZ )
7832, 77anim12i 332 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  e.  ZZ  /\  N  e.  ZZ ) )
79 gcdcl 11385 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ )  ->  ( C  gcd  N
)  e.  NN0 )
8078, 79syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N )  e.  NN0 )
8180nn0cnd 8826 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N )  e.  CC )
82 nnne0 8548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  NN  ->  N  =/=  0 )
8382neneqd 2283 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  NN  ->  -.  N  =  0 )
8483adantr 271 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  -.  N  =  0 )
8584adantl 272 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  -.  N  =  0 )
8685intnand 881 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  -.  ( C  =  0  /\  N  =  0 ) )
87 gcdeq0 11395 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( C  gcd  N )  =  0  <->  ( C  =  0  /\  N  =  0 ) ) )
8878, 87syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( ( C  gcd  N )  =  0  <->  ( C  =  0  /\  N  =  0 ) ) )
8988necon3abid 2301 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( ( C  gcd  N )  =/=  0  <->  -.  ( C  =  0  /\  N  =  0 ) ) )
9086, 89mpbird 166 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N )  =/=  0
)
9180nn0zd 8965 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N )  e.  ZZ )
92 0zd 8860 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  0  e.  ZZ )
93 zapne 8919 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( C  gcd  N
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( C  gcd  N ) #  0  <->  ( C  gcd  N )  =/=  0
) )
9491, 92, 93syl2anc 404 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( ( C  gcd  N ) #  0  <-> 
( C  gcd  N
)  =/=  0 ) )
9590, 94mpbird 166 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  gcd  N ) #  0 )
9674, 75, 81, 95divassapd 8390 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( (
k  x.  C )  /  ( C  gcd  N ) )  =  ( k  x.  ( C  /  ( C  gcd  N ) ) ) )
9772adantl 272 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  k  e.  ZZ )
9870, 82jca 301 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN  ->  ( N  e.  ZZ  /\  N  =/=  0 ) )
9998adantr 271 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  ( N  e.  ZZ  /\  N  =/=  0 ) )
10032, 99anim12i 332 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) ) )
101 3anass 931 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  <->  ( C  e.  ZZ  /\  ( N  e.  ZZ  /\  N  =/=  0 ) ) )
102100, 101sylibr 133 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) )
103 divgcdz 11390 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( C  /  ( C  gcd  N ) )  e.  ZZ )
104102, 103syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( C  /  ( C  gcd  N ) )  e.  ZZ )
10597, 104zmulcld 8973 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( k  x.  ( C  /  ( C  gcd  N ) ) )  e.  ZZ )
10696, 105eqeltrd 2171 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( (
k  x.  C )  /  ( C  gcd  N ) )  e.  ZZ )
107 dvdsmul1 11245 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  ZZ  /\  ( ( k  x.  C )  /  ( C  gcd  N ) )  e.  ZZ )  ->  N  ||  ( N  x.  ( ( k  x.  C )  /  ( C  gcd  N ) ) ) )
10871, 106, 107syl2an2 562 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  N  ||  ( N  x.  ( (
k  x.  C )  /  ( C  gcd  N ) ) ) )
10976nncnd 8534 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  NN  /\  k  e.  ZZ )  ->  N  e.  CC )
110109adantl 272 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  N  e.  CC )
111 divmulasscomap 8260 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( k  e.  CC  /\  N  e.  CC  /\  C  e.  CC )  /\  ( ( C  gcd  N )  e.  CC  /\  ( C  gcd  N ) #  0 ) )  -> 
( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( N  x.  ( ( k  x.  C )  /  ( C  gcd  N ) ) ) )
11274, 110, 75, 81, 95, 111syl32anc 1189 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  ( (
k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( N  x.  ( ( k  x.  C )  /  ( C  gcd  N ) ) ) )
113108, 112breqtrrd 3893 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  k  e.  ZZ ) )  ->  N  ||  (
( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) )
114113exp32 358 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( N  e.  NN  ->  ( k  e.  ZZ  ->  N 
||  ( ( k  x.  ( N  / 
( C  gcd  N
) ) )  x.  C ) ) ) )
115114adantrd 274 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) )  -> 
( k  e.  ZZ  ->  N  ||  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) ) ) )
116115imp 123 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( k  e.  ZZ  ->  N  ||  (
( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) ) )
117116adantr 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( k  e.  ZZ  ->  N  ||  (
( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) ) )
118117imp 123 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  N  ||  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C ) )
119 breq2 3871 . . . . . . . . . . . . . 14  |-  ( ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  x.  C
)  -  ( B  x.  C ) )  ->  ( N  ||  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  <-> 
N  ||  ( ( A  x.  C )  -  ( B  x.  C ) ) ) )
120118, 119syl5ibcom 154 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  x.  C )  =  ( ( A  x.  C
)  -  ( B  x.  C ) )  ->  N  ||  (
( A  x.  C
)  -  ( B  x.  C ) ) ) )
12169, 120sylbid 149 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  /\  k  e.  ZZ )  ->  ( ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  ->  N  ||  (
( A  x.  C
)  -  ( B  x.  C ) ) ) )
122121rexlimdva 2502 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( E. k  e.  ZZ  (
k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  ->  N  ||  (
( A  x.  C
)  -  ( B  x.  C ) ) ) )
12331adantl 272 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  N  e.  NN )
124 zmulcl 8901 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  C
)  e.  ZZ )
1251243adant2 965 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  x.  C )  e.  ZZ )
126125adantr 271 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( A  x.  C )  e.  ZZ )
127 zmulcl 8901 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  C
)  e.  ZZ )
1281273adant1 964 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  ( B  x.  C )  e.  ZZ )
129128adantr 271 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( B  x.  C )  e.  ZZ )
130 moddvds 11232 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( A  x.  C
)  e.  ZZ  /\  ( B  x.  C
)  e.  ZZ )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  <->  N  ||  ( ( A  x.  C )  -  ( B  x.  C ) ) ) )
131123, 126, 129, 130syl3anc 1181 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  <->  N  ||  ( ( A  x.  C )  -  ( B  x.  C ) ) ) )
132131adantr 271 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( (
( A  x.  C
)  mod  N )  =  ( ( B  x.  C )  mod 
N )  <->  N  ||  (
( A  x.  C
)  -  ( B  x.  C ) ) ) )
133122, 132sylibrd 168 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  C  =/=  0
)  ->  ( E. k  e.  ZZ  (
k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) )
134133ex 114 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( C  =/=  0  ->  ( E. k  e.  ZZ  (
k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B
)  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) ) )
135134com23 78 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( E. k  e.  ZZ  ( k  x.  ( N  /  ( C  gcd  N ) ) )  =  ( A  -  B )  -> 
( C  =/=  0  ->  ( ( A  x.  C )  mod  N
)  =  ( ( B  x.  C )  mod  N ) ) ) )
13645, 135sylbid 149 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  ->  ( C  =/=  0  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
) ) ) )
137136imp 123 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( C  =/=  0  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) )
138137com12 30 . . . . 5  |-  ( C  =/=  0  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
) )
13925, 138jaoi 674 . . . 4  |-  ( ( C  =  0  \/  C  =/=  0 )  ->  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
) )
1409, 139syl 14 . . 3  |-  ( C  e.  ZZ  ->  (
( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
) )
1411, 140mpcom 36 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  / 
( C  gcd  N
) ) ) )  /\  ( A  mod  M )  =  ( B  mod  M ) )  ->  ( ( A  x.  C )  mod 
N )  =  ( ( B  x.  C
)  mod  N )
)
142141ex 114 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 667  DECID wdc 783    /\ w3a 927    = wceq 1296    e. wcel 1445    =/= wne 2262   E.wrex 2371   class class class wbr 3867  (class class class)co 5690   CCcc 7445   0cc0 7447    x. cmul 7452    - cmin 7750   # cap 8155    / cdiv 8236   NNcn 8520   NN0cn0 8771   ZZcz 8848    mod cmo 9878    || cdvds 11223    gcd cgcd 11365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-sup 6759  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-fz 9574  df-fzo 9703  df-fl 9826  df-mod 9879  df-seqfrec 10001  df-exp 10070  df-cj 10391  df-re 10392  df-im 10393  df-rsqrt 10546  df-abs 10547  df-dvds 11224  df-gcd 11366
This theorem is referenced by:  cncongr  11514
  Copyright terms: Public domain W3C validator