| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnegnn | Unicode version | ||
| Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg1.b |
|
| mulg1.m |
|
| mulgnegnn.i |
|
| Ref | Expression |
|---|---|
| mulgnegnn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn 9015 |
. . . . . 6
| |
| 2 | 1 | negnegd 8345 |
. . . . 5
|
| 3 | 2 | adantr 276 |
. . . 4
|
| 4 | 3 | fveq2d 5565 |
. . 3
|
| 5 | 4 | fveq2d 5565 |
. 2
|
| 6 | nnnegz 9346 |
. . . 4
| |
| 7 | mulg1.b |
. . . . 5
| |
| 8 | eqid 2196 |
. . . . 5
| |
| 9 | eqid 2196 |
. . . . 5
| |
| 10 | mulgnegnn.i |
. . . . 5
| |
| 11 | mulg1.m |
. . . . 5
| |
| 12 | eqid 2196 |
. . . . 5
| |
| 13 | 7, 8, 9, 10, 11, 12 | mulgval 13328 |
. . . 4
|
| 14 | 6, 13 | sylan 283 |
. . 3
|
| 15 | nnne0 9035 |
. . . . . . 7
| |
| 16 | negeq0 8297 |
. . . . . . . . 9
| |
| 17 | 16 | necon3abid 2406 |
. . . . . . . 8
|
| 18 | 1, 17 | syl 14 |
. . . . . . 7
|
| 19 | 15, 18 | mpbid 147 |
. . . . . 6
|
| 20 | 19 | iffalsed 3572 |
. . . . 5
|
| 21 | nnre 9014 |
. . . . . . . 8
| |
| 22 | 21 | renegcld 8423 |
. . . . . . 7
|
| 23 | nngt0 9032 |
. . . . . . . 8
| |
| 24 | 21 | lt0neg2d 8560 |
. . . . . . . 8
|
| 25 | 23, 24 | mpbid 147 |
. . . . . . 7
|
| 26 | 0re 8043 |
. . . . . . . 8
| |
| 27 | ltnsym 8129 |
. . . . . . . 8
| |
| 28 | 26, 27 | mpan2 425 |
. . . . . . 7
|
| 29 | 22, 25, 28 | sylc 62 |
. . . . . 6
|
| 30 | 29 | iffalsed 3572 |
. . . . 5
|
| 31 | 20, 30 | eqtrd 2229 |
. . . 4
|
| 32 | 31 | adantr 276 |
. . 3
|
| 33 | 14, 32 | eqtrd 2229 |
. 2
|
| 34 | 7, 8, 11, 12 | mulgnn 13332 |
. . 3
|
| 35 | 34 | fveq2d 5565 |
. 2
|
| 36 | 5, 33, 35 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-minusg 13206 df-mulg 13326 |
| This theorem is referenced by: mulgsubcl 13342 mulgneg 13346 mulgneg2 13362 cnfldmulg 14208 |
| Copyright terms: Public domain | W3C validator |