ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnegnn Unicode version

Theorem mulgnegnn 13205
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b  |-  B  =  ( Base `  G
)
mulg1.m  |-  .x.  =  (.g
`  G )
mulgnegnn.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
mulgnegnn  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )

Proof of Theorem mulgnegnn
StepHypRef Expression
1 nncn 8992 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  CC )
21negnegd 8323 . . . . 5  |-  ( N  e.  NN  ->  -u -u N  =  N )
32adantr 276 . . . 4  |-  ( ( N  e.  NN  /\  X  e.  B )  -> 
-u -u N  =  N )
43fveq2d 5559 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  (  seq 1 ( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
54fveq2d 5559 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) ) )
6 nnnegz 9323 . . . 4  |-  ( N  e.  NN  ->  -u N  e.  ZZ )
7 mulg1.b . . . . 5  |-  B  =  ( Base `  G
)
8 eqid 2193 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
9 eqid 2193 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
10 mulgnegnn.i . . . . 5  |-  I  =  ( invg `  G )
11 mulg1.m . . . . 5  |-  .x.  =  (.g
`  G )
12 eqid 2193 . . . . 5  |-  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) )  =  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) )
137, 8, 9, 10, 11, 12mulgval 13195 . . . 4  |-  ( (
-u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  if ( -u N  =  0 ,  ( 0g
`  G ) ,  if ( 0  <  -u N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ,  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) ) ) )
146, 13sylan 283 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  if ( -u N  =  0 ,  ( 0g
`  G ) ,  if ( 0  <  -u N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u N ) ,  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) ) ) )
15 nnne0 9012 . . . . . . 7  |-  ( N  e.  NN  ->  N  =/=  0 )
16 negeq0 8275 . . . . . . . . 9  |-  ( N  e.  CC  ->  ( N  =  0  <->  -u N  =  0 ) )
1716necon3abid 2403 . . . . . . . 8  |-  ( N  e.  CC  ->  ( N  =/=  0  <->  -.  -u N  =  0 ) )
181, 17syl 14 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  =/=  0  <->  -.  -u N  =  0 ) )
1915, 18mpbid 147 . . . . . 6  |-  ( N  e.  NN  ->  -.  -u N  =  0 )
2019iffalsed 3568 . . . . 5  |-  ( N  e.  NN  ->  if ( -u N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  -u N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) ,  ( I `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
) ) ) )  =  if ( 0  <  -u N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 -u N ) ,  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) ) )
21 nnre 8991 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
2221renegcld 8401 . . . . . . 7  |-  ( N  e.  NN  ->  -u N  e.  RR )
23 nngt0 9009 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  N )
2421lt0neg2d 8537 . . . . . . . 8  |-  ( N  e.  NN  ->  (
0  <  N  <->  -u N  <  0 ) )
2523, 24mpbid 147 . . . . . . 7  |-  ( N  e.  NN  ->  -u N  <  0 )
26 0re 8021 . . . . . . . 8  |-  0  e.  RR
27 ltnsym 8107 . . . . . . . 8  |-  ( (
-u N  e.  RR  /\  0  e.  RR )  ->  ( -u N  <  0  ->  -.  0  <  -u N ) )
2826, 27mpan2 425 . . . . . . 7  |-  ( -u N  e.  RR  ->  (
-u N  <  0  ->  -.  0  <  -u N
) )
2922, 25, 28sylc 62 . . . . . 6  |-  ( N  e.  NN  ->  -.  0  <  -u N )
3029iffalsed 3568 . . . . 5  |-  ( N  e.  NN  ->  if ( 0  <  -u N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) ,  ( I `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
) ) )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) )
3120, 30eqtrd 2226 . . . 4  |-  ( N  e.  NN  ->  if ( -u N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  -u N ,  (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u N
) ,  ( I `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
) ) ) )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 -u -u N ) ) )
3231adantr 276 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  if ( -u N  =  0 ,  ( 0g `  G ) ,  if ( 0  <  -u N ,  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 -u N ) ,  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) ) )  =  ( I `
 (  seq 1
( ( +g  `  G
) ,  ( NN 
X.  { X }
) ) `  -u -u N
) ) )
3314, 32eqtrd 2226 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  -u -u N ) ) )
347, 8, 11, 12mulgnn 13199 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `  N ) )
3534fveq2d 5559 . 2  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( I `  ( N  .x.  X ) )  =  ( I `  (  seq 1 ( ( +g  `  G ) ,  ( NN  X.  { X } ) ) `
 N ) ) )
365, 33, 353eqtr4d 2236 1  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( I `  ( N 
.x.  X ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   ifcif 3558   {csn 3619   class class class wbr 4030    X. cxp 4658   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    < clt 8056   -ucneg 8193   NNcn 8984   ZZcz 9320    seqcseq 10521   Basecbs 12621   +g cplusg 12698   0gc0g 12870   invgcminusg 13076  .gcmg 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-minusg 13079  df-mulg 13193
This theorem is referenced by:  mulgsubcl  13209  mulgneg  13213  mulgneg2  13229  cnfldmulg  14075
  Copyright terms: Public domain W3C validator