ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnegap0 Unicode version

Theorem expnegap0 10459
Description: Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
Assertion
Ref Expression
expnegap0  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e. 
NN0 )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )

Proof of Theorem expnegap0
StepHypRef Expression
1 elnn0 9112 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnne0 8881 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
32adantl 275 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  =/=  0 )
4 nncn 8861 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
54adantl 275 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  CC )
65negeq0d 8197 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  =  0  <->  -u N  =  0
) )
76necon3abid 2374 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  =/=  0  <->  -.  -u N  =  0
) )
83, 7mpbid 146 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  -u N  =  0 )
98iffalsed 3529 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )
10 nnnn0 9117 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  NN0 )
1110adantl 275 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN0 )
12 nn0nlt0 9136 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  -.  N  <  0 )
1311, 12syl 14 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  N  <  0
)
1411nn0red 9164 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  RR )
1514lt0neg1d 8409 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  <  0  <->  0  <  -u N ) )
1613, 15mtbid 662 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  0  <  -u N
)
1716iffalsed 3529 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( 0  <  -u N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u -u N ) ) )
185negnegd 8196 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  -> 
-u -u N  =  N )
1918fveq2d 5489 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  -u -u N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
2019oveq2d 5857 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) ) )
219, 17, 203eqtrd 2202 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ) )
2221adantlr 469 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ) )
23 simp1 987 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  A  e.  CC )
24 simp3 989 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  N  e.  NN )
2524nnzd 9308 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  N  e.  ZZ )
2625znegcld 9311 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  -u N  e.  ZZ )
27 simp2 988 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  A #  0 )
2827orcd 723 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  ( A #  0  \/  0  <_ 
-u N ) )
29 exp3val 10453 . . . . . . 7  |-  ( ( A  e.  CC  /\  -u N  e.  ZZ  /\  ( A #  0  \/  0  <_  -u N ) )  ->  ( A ^ -u N )  =  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
3023, 26, 28, 29syl3anc 1228 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  ( A ^ -u N )  =  if ( -u N  =  0 , 
1 ,  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
31303expa 1193 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  ( A ^ -u N
)  =  if (
-u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
32 expnnval 10454 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
3332oveq2d 5857 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( 1  /  ( A ^ N ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ) )
3433adantlr 469 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  ( 1  /  ( A ^ N ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ) )
3522, 31, 343eqtr4d 2208 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  ( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )
36 1div1e1 8596 . . . . . . 7  |-  ( 1  /  1 )  =  1
3736eqcomi 2169 . . . . . 6  |-  1  =  ( 1  / 
1 )
38 negeq 8087 . . . . . . . . 9  |-  ( N  =  0  ->  -u N  =  -u 0 )
39 neg0 8140 . . . . . . . . 9  |-  -u 0  =  0
4038, 39eqtrdi 2214 . . . . . . . 8  |-  ( N  =  0  ->  -u N  =  0 )
4140oveq2d 5857 . . . . . . 7  |-  ( N  =  0  ->  ( A ^ -u N )  =  ( A ^
0 ) )
42 exp0 10455 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
4341, 42sylan9eqr 2220 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ -u N )  =  1 )
44 oveq2 5849 . . . . . . . 8  |-  ( N  =  0  ->  ( A ^ N )  =  ( A ^ 0 ) )
4544, 42sylan9eqr 2220 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ N )  =  1 )
4645oveq2d 5857 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( 1  / 
( A ^ N
) )  =  ( 1  /  1 ) )
4737, 43, 463eqtr4a 2224 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
4847adantlr 469 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  =  0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
4935, 48jaodan 787 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )
501, 49sylan2b 285 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN0 )  -> 
( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )
51503impa 1184 1  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e. 
NN0 )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2335   ifcif 3519   {csn 3575   class class class wbr 3981    X. cxp 4601   ` cfv 5187  (class class class)co 5841   CCcc 7747   0cc0 7749   1c1 7750    x. cmul 7754    < clt 7929    <_ cle 7930   -ucneg 8066   # cap 8475    / cdiv 8564   NNcn 8853   NN0cn0 9110   ZZcz 9187    seqcseq 10376   ^cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-n0 9111  df-z 9188  df-uz 9463  df-seqfrec 10377  df-exp 10451
This theorem is referenced by:  expineg2  10460  expn1ap0  10461  expnegzap  10485  efexp  11619  pcexp  12237  ex-exp  13568
  Copyright terms: Public domain W3C validator