ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnegap0 Unicode version

Theorem expnegap0 10484
Description: Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
Assertion
Ref Expression
expnegap0  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e. 
NN0 )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )

Proof of Theorem expnegap0
StepHypRef Expression
1 elnn0 9137 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnne0 8906 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
32adantl 275 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  =/=  0 )
4 nncn 8886 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
54adantl 275 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  CC )
65negeq0d 8222 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  =  0  <->  -u N  =  0
) )
76necon3abid 2379 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  =/=  0  <->  -.  -u N  =  0
) )
83, 7mpbid 146 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  -u N  =  0 )
98iffalsed 3536 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )
10 nnnn0 9142 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  NN0 )
1110adantl 275 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN0 )
12 nn0nlt0 9161 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  -.  N  <  0 )
1311, 12syl 14 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  N  <  0
)
1411nn0red 9189 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  RR )
1514lt0neg1d 8434 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  <  0  <->  0  <  -u N ) )
1613, 15mtbid 667 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  0  <  -u N
)
1716iffalsed 3536 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( 0  <  -u N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u -u N ) ) )
185negnegd 8221 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  -> 
-u -u N  =  N )
1918fveq2d 5500 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  -u -u N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
2019oveq2d 5869 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) ) )
219, 17, 203eqtrd 2207 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ) )
2221adantlr 474 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ) )
23 simp1 992 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  A  e.  CC )
24 simp3 994 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  N  e.  NN )
2524nnzd 9333 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  N  e.  ZZ )
2625znegcld 9336 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  -u N  e.  ZZ )
27 simp2 993 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  A #  0 )
2827orcd 728 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  ( A #  0  \/  0  <_ 
-u N ) )
29 exp3val 10478 . . . . . . 7  |-  ( ( A  e.  CC  /\  -u N  e.  ZZ  /\  ( A #  0  \/  0  <_  -u N ) )  ->  ( A ^ -u N )  =  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
3023, 26, 28, 29syl3anc 1233 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  ( A ^ -u N )  =  if ( -u N  =  0 , 
1 ,  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
31303expa 1198 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  ( A ^ -u N
)  =  if (
-u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
32 expnnval 10479 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
3332oveq2d 5869 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( 1  /  ( A ^ N ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ) )
3433adantlr 474 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  ( 1  /  ( A ^ N ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ) )
3522, 31, 343eqtr4d 2213 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  ( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )
36 1div1e1 8621 . . . . . . 7  |-  ( 1  /  1 )  =  1
3736eqcomi 2174 . . . . . 6  |-  1  =  ( 1  / 
1 )
38 negeq 8112 . . . . . . . . 9  |-  ( N  =  0  ->  -u N  =  -u 0 )
39 neg0 8165 . . . . . . . . 9  |-  -u 0  =  0
4038, 39eqtrdi 2219 . . . . . . . 8  |-  ( N  =  0  ->  -u N  =  0 )
4140oveq2d 5869 . . . . . . 7  |-  ( N  =  0  ->  ( A ^ -u N )  =  ( A ^
0 ) )
42 exp0 10480 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
4341, 42sylan9eqr 2225 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ -u N )  =  1 )
44 oveq2 5861 . . . . . . . 8  |-  ( N  =  0  ->  ( A ^ N )  =  ( A ^ 0 ) )
4544, 42sylan9eqr 2225 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ N )  =  1 )
4645oveq2d 5869 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( 1  / 
( A ^ N
) )  =  ( 1  /  1 ) )
4737, 43, 463eqtr4a 2229 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
4847adantlr 474 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  =  0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
4935, 48jaodan 792 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )
501, 49sylan2b 285 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN0 )  -> 
( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )
51503impa 1189 1  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e. 
NN0 )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   ifcif 3526   {csn 3583   class class class wbr 3989    X. cxp 4609   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775    x. cmul 7779    < clt 7954    <_ cle 7955   -ucneg 8091   # cap 8500    / cdiv 8589   NNcn 8878   NN0cn0 9135   ZZcz 9212    seqcseq 10401   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  expineg2  10485  expn1ap0  10486  expnegzap  10510  efexp  11645  pcexp  12263  ex-exp  13762
  Copyright terms: Public domain W3C validator