ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnegap0 Unicode version

Theorem expnegap0 10690
Description: Value of a complex number raised to a negative integer power. (Contributed by Jim Kingdon, 8-Jun-2020.)
Assertion
Ref Expression
expnegap0  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e. 
NN0 )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )

Proof of Theorem expnegap0
StepHypRef Expression
1 elnn0 9296 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnne0 9063 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
32adantl 277 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  =/=  0 )
4 nncn 9043 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  CC )
54adantl 277 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  CC )
65negeq0d 8374 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  =  0  <->  -u N  =  0
) )
76necon3abid 2414 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  =/=  0  <->  -.  -u N  =  0
) )
83, 7mpbid 147 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  -u N  =  0 )
98iffalsed 3580 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )
10 nnnn0 9301 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  NN0 )
1110adantl 277 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  NN0 )
12 nn0nlt0 9320 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  -.  N  <  0 )
1311, 12syl 14 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  N  <  0
)
1411nn0red 9348 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  N  e.  RR )
1514lt0neg1d 8587 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( N  <  0  <->  0  <  -u N ) )
1613, 15mtbid 673 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  -.  0  <  -u N
)
1716iffalsed 3580 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( 0  <  -u N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u -u N ) ) )
185negnegd 8373 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  N  e.  NN )  -> 
-u -u N  =  N )
1918fveq2d 5579 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ) `  -u -u N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
2019oveq2d 5959 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) ) )
219, 17, 203eqtrd 2241 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ) )
2221adantlr 477 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) )  =  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  N ) ) )
23 simp1 999 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  A  e.  CC )
24 simp3 1001 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  N  e.  NN )
2524nnzd 9493 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  N  e.  ZZ )
2625znegcld 9496 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  -u N  e.  ZZ )
27 simp2 1000 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  A #  0 )
2827orcd 734 . . . . . . 7  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  ( A #  0  \/  0  <_ 
-u N ) )
29 exp3val 10684 . . . . . . 7  |-  ( ( A  e.  CC  /\  -u N  e.  ZZ  /\  ( A #  0  \/  0  <_  -u N ) )  ->  ( A ^ -u N )  =  if ( -u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
3023, 26, 28, 29syl3anc 1249 . . . . . 6  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  NN )  ->  ( A ^ -u N )  =  if ( -u N  =  0 , 
1 ,  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
31303expa 1205 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  ( A ^ -u N
)  =  if (
-u N  =  0 ,  1 ,  if ( 0  <  -u N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ) `  -u N ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  -u -u N ) ) ) ) )
32 expnnval 10685 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( A ^ N
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ) `  N ) )
3332oveq2d 5959 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN )  ->  ( 1  /  ( A ^ N ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ) )
3433adantlr 477 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  ( 1  /  ( A ^ N ) )  =  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ) `
 N ) ) )
3522, 31, 343eqtr4d 2247 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN )  ->  ( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )
36 1div1e1 8776 . . . . . . 7  |-  ( 1  /  1 )  =  1
3736eqcomi 2208 . . . . . 6  |-  1  =  ( 1  / 
1 )
38 negeq 8264 . . . . . . . . 9  |-  ( N  =  0  ->  -u N  =  -u 0 )
39 neg0 8317 . . . . . . . . 9  |-  -u 0  =  0
4038, 39eqtrdi 2253 . . . . . . . 8  |-  ( N  =  0  ->  -u N  =  0 )
4140oveq2d 5959 . . . . . . 7  |-  ( N  =  0  ->  ( A ^ -u N )  =  ( A ^
0 ) )
42 exp0 10686 . . . . . . 7  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
4341, 42sylan9eqr 2259 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ -u N )  =  1 )
44 oveq2 5951 . . . . . . . 8  |-  ( N  =  0  ->  ( A ^ N )  =  ( A ^ 0 ) )
4544, 42sylan9eqr 2259 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ N )  =  1 )
4645oveq2d 5959 . . . . . 6  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( 1  / 
( A ^ N
) )  =  ( 1  /  1 ) )
4737, 43, 463eqtr4a 2263 . . . . 5  |-  ( ( A  e.  CC  /\  N  =  0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
4847adantlr 477 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  =  0 )  ->  ( A ^ -u N )  =  ( 1  /  ( A ^ N ) ) )
4935, 48jaodan 798 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )
501, 49sylan2b 287 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  N  e.  NN0 )  -> 
( A ^ -u N
)  =  ( 1  /  ( A ^ N ) ) )
51503impa 1196 1  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e. 
NN0 )  ->  ( A ^ -u N )  =  ( 1  / 
( A ^ N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375   ifcif 3570   {csn 3632   class class class wbr 4043    X. cxp 4672   ` cfv 5270  (class class class)co 5943   CCcc 7922   0cc0 7924   1c1 7925    x. cmul 7929    < clt 8106    <_ cle 8107   -ucneg 8243   # cap 8653    / cdiv 8744   NNcn 9035   NN0cn0 9294   ZZcz 9371    seqcseq 10590   ^cexp 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-seqfrec 10591  df-exp 10682
This theorem is referenced by:  expineg2  10691  expn1ap0  10692  expnegzap  10716  efexp  11964  pcexp  12603  ex-exp  15625
  Copyright terms: Public domain W3C validator