Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fndmdif | Unicode version |
Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
fndmdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3248 | . . . . 5 | |
2 | dmss 4803 | . . . . 5 | |
3 | 1, 2 | ax-mp 5 | . . . 4 |
4 | fndm 5287 | . . . . 5 | |
5 | 4 | adantr 274 | . . . 4 |
6 | 3, 5 | sseqtrid 3192 | . . 3 |
7 | dfss1 3326 | . . 3 | |
8 | 6, 7 | sylib 121 | . 2 |
9 | vex 2729 | . . . . 5 | |
10 | 9 | eldm 4801 | . . . 4 |
11 | eqcom 2167 | . . . . . . . 8 | |
12 | fnbrfvb 5527 | . . . . . . . 8 | |
13 | 11, 12 | syl5bb 191 | . . . . . . 7 |
14 | 13 | adantll 468 | . . . . . 6 |
15 | 14 | necon3abid 2375 | . . . . 5 |
16 | funfvex 5503 | . . . . . . . 8 | |
17 | 16 | funfni 5288 | . . . . . . 7 |
18 | 17 | adantlr 469 | . . . . . 6 |
19 | breq2 3986 | . . . . . . . 8 | |
20 | 19 | notbid 657 | . . . . . . 7 |
21 | 20 | ceqsexgv 2855 | . . . . . 6 |
22 | 18, 21 | syl 14 | . . . . 5 |
23 | eqcom 2167 | . . . . . . . . . 10 | |
24 | fnbrfvb 5527 | . . . . . . . . . 10 | |
25 | 23, 24 | syl5bb 191 | . . . . . . . . 9 |
26 | 25 | adantlr 469 | . . . . . . . 8 |
27 | 26 | anbi1d 461 | . . . . . . 7 |
28 | brdif 4035 | . . . . . . 7 | |
29 | 27, 28 | bitr4di 197 | . . . . . 6 |
30 | 29 | exbidv 1813 | . . . . 5 |
31 | 15, 22, 30 | 3bitr2rd 216 | . . . 4 |
32 | 10, 31 | syl5bb 191 | . . 3 |
33 | 32 | rabbi2dva 3330 | . 2 |
34 | 8, 33 | eqtr3d 2200 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wne 2336 crab 2448 cvv 2726 cdif 3113 cin 3115 wss 3116 class class class wbr 3982 cdm 4604 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: fndmdifcom 5591 |
Copyright terms: Public domain | W3C validator |