ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmdif Unicode version

Theorem fndmdif 5518
Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdif  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
Distinct variable groups:    x, F    x, G    x, A

Proof of Theorem fndmdif
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 difss 3197 . . . . 5  |-  ( F 
\  G )  C_  F
2 dmss 4733 . . . . 5  |-  ( ( F  \  G ) 
C_  F  ->  dom  ( F  \  G ) 
C_  dom  F )
31, 2ax-mp 5 . . . 4  |-  dom  ( F  \  G )  C_  dom  F
4 fndm 5217 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
54adantr 274 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  F  =  A )
63, 5sseqtrid 3142 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  C_  A
)
7 dfss1 3275 . . 3  |-  ( dom  ( F  \  G
)  C_  A  <->  ( A  i^i  dom  ( F  \  G ) )  =  dom  ( F  \  G ) )
86, 7sylib 121 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  i^i  dom  ( F  \  G ) )  =  dom  ( F  \  G ) )
9 vex 2684 . . . . 5  |-  x  e. 
_V
109eldm 4731 . . . 4  |-  ( x  e.  dom  ( F 
\  G )  <->  E. y  x ( F  \  G ) y )
11 eqcom 2139 . . . . . . . 8  |-  ( ( F `  x )  =  ( G `  x )  <->  ( G `  x )  =  ( F `  x ) )
12 fnbrfvb 5455 . . . . . . . 8  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( ( G `  x )  =  ( F `  x )  <-> 
x G ( F `
 x ) ) )
1311, 12syl5bb 191 . . . . . . 7  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  ( G `  x )  <-> 
x G ( F `
 x ) ) )
1413adantll 467 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( F `  x
)  =  ( G `
 x )  <->  x G
( F `  x
) ) )
1514necon3abid 2345 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( F `  x
)  =/=  ( G `
 x )  <->  -.  x G ( F `  x ) ) )
16 funfvex 5431 . . . . . . . 8  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
1716funfni 5218 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
1817adantlr 468 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( F `  x )  e.  _V )
19 breq2 3928 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
x G y  <->  x G
( F `  x
) ) )
2019notbid 656 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  ( -.  x G y  <->  -.  x G ( F `  x ) ) )
2120ceqsexgv 2809 . . . . . 6  |-  ( ( F `  x )  e.  _V  ->  ( E. y ( y  =  ( F `  x
)  /\  -.  x G y )  <->  -.  x G ( F `  x ) ) )
2218, 21syl 14 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( E. y ( y  =  ( F `  x
)  /\  -.  x G y )  <->  -.  x G ( F `  x ) ) )
23 eqcom 2139 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
24 fnbrfvb 5455 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
2523, 24syl5bb 191 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( y  =  ( F `  x )  <-> 
x F y ) )
2625adantlr 468 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
y  =  ( F `
 x )  <->  x F
y ) )
2726anbi1d 460 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( y  =  ( F `  x )  /\  -.  x G y )  <->  ( x F y  /\  -.  x G y ) ) )
28 brdif 3976 . . . . . . 7  |-  ( x ( F  \  G
) y  <->  ( x F y  /\  -.  x G y ) )
2927, 28syl6bbr 197 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( y  =  ( F `  x )  /\  -.  x G y )  <->  x ( F  \  G ) y ) )
3029exbidv 1797 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( E. y ( y  =  ( F `  x
)  /\  -.  x G y )  <->  E. y  x ( F  \  G ) y ) )
3115, 22, 303bitr2rd 216 . . . 4  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( E. y  x ( F  \  G ) y  <-> 
( F `  x
)  =/=  ( G `
 x ) ) )
3210, 31syl5bb 191 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
x  e.  dom  ( F  \  G )  <->  ( F `  x )  =/=  ( G `  x )
) )
3332rabbi2dva 3279 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  i^i  dom  ( F  \  G ) )  =  { x  e.  A  |  ( F `  x )  =/=  ( G `  x
) } )
348, 33eqtr3d 2172 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480    =/= wne 2306   {crab 2418   _Vcvv 2681    \ cdif 3063    i^i cin 3065    C_ wss 3066   class class class wbr 3924   dom cdm 4534    Fn wfn 5113   ` cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by:  fndmdifcom  5519
  Copyright terms: Public domain W3C validator