| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndmdif | Unicode version | ||
| Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| fndmdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3298 |
. . . . 5
| |
| 2 | dmss 4876 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | fndm 5372 |
. . . . 5
| |
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | 3, 5 | sseqtrid 3242 |
. . 3
|
| 7 | dfss1 3376 |
. . 3
| |
| 8 | 6, 7 | sylib 122 |
. 2
|
| 9 | vex 2774 |
. . . . 5
| |
| 10 | 9 | eldm 4874 |
. . . 4
|
| 11 | eqcom 2206 |
. . . . . . . 8
| |
| 12 | fnbrfvb 5618 |
. . . . . . . 8
| |
| 13 | 11, 12 | bitrid 192 |
. . . . . . 7
|
| 14 | 13 | adantll 476 |
. . . . . 6
|
| 15 | 14 | necon3abid 2414 |
. . . . 5
|
| 16 | funfvex 5592 |
. . . . . . . 8
| |
| 17 | 16 | funfni 5375 |
. . . . . . 7
|
| 18 | 17 | adantlr 477 |
. . . . . 6
|
| 19 | breq2 4047 |
. . . . . . . 8
| |
| 20 | 19 | notbid 668 |
. . . . . . 7
|
| 21 | 20 | ceqsexgv 2901 |
. . . . . 6
|
| 22 | 18, 21 | syl 14 |
. . . . 5
|
| 23 | eqcom 2206 |
. . . . . . . . . 10
| |
| 24 | fnbrfvb 5618 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | bitrid 192 |
. . . . . . . . 9
|
| 26 | 25 | adantlr 477 |
. . . . . . . 8
|
| 27 | 26 | anbi1d 465 |
. . . . . . 7
|
| 28 | brdif 4096 |
. . . . . . 7
| |
| 29 | 27, 28 | bitr4di 198 |
. . . . . 6
|
| 30 | 29 | exbidv 1847 |
. . . . 5
|
| 31 | 15, 22, 30 | 3bitr2rd 217 |
. . . 4
|
| 32 | 10, 31 | bitrid 192 |
. . 3
|
| 33 | 32 | rabbi2dva 3380 |
. 2
|
| 34 | 8, 33 | eqtr3d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 |
| This theorem is referenced by: fndmdifcom 5685 |
| Copyright terms: Public domain | W3C validator |