| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndmdif | Unicode version | ||
| Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| fndmdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3307 |
. . . . 5
| |
| 2 | dmss 4896 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | fndm 5392 |
. . . . 5
| |
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | 3, 5 | sseqtrid 3251 |
. . 3
|
| 7 | dfss1 3385 |
. . 3
| |
| 8 | 6, 7 | sylib 122 |
. 2
|
| 9 | vex 2779 |
. . . . 5
| |
| 10 | 9 | eldm 4894 |
. . . 4
|
| 11 | eqcom 2209 |
. . . . . . . 8
| |
| 12 | fnbrfvb 5642 |
. . . . . . . 8
| |
| 13 | 11, 12 | bitrid 192 |
. . . . . . 7
|
| 14 | 13 | adantll 476 |
. . . . . 6
|
| 15 | 14 | necon3abid 2417 |
. . . . 5
|
| 16 | funfvex 5616 |
. . . . . . . 8
| |
| 17 | 16 | funfni 5395 |
. . . . . . 7
|
| 18 | 17 | adantlr 477 |
. . . . . 6
|
| 19 | breq2 4063 |
. . . . . . . 8
| |
| 20 | 19 | notbid 669 |
. . . . . . 7
|
| 21 | 20 | ceqsexgv 2909 |
. . . . . 6
|
| 22 | 18, 21 | syl 14 |
. . . . 5
|
| 23 | eqcom 2209 |
. . . . . . . . . 10
| |
| 24 | fnbrfvb 5642 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | bitrid 192 |
. . . . . . . . 9
|
| 26 | 25 | adantlr 477 |
. . . . . . . 8
|
| 27 | 26 | anbi1d 465 |
. . . . . . 7
|
| 28 | brdif 4113 |
. . . . . . 7
| |
| 29 | 27, 28 | bitr4di 198 |
. . . . . 6
|
| 30 | 29 | exbidv 1849 |
. . . . 5
|
| 31 | 15, 22, 30 | 3bitr2rd 217 |
. . . 4
|
| 32 | 10, 31 | bitrid 192 |
. . 3
|
| 33 | 32 | rabbi2dva 3389 |
. 2
|
| 34 | 8, 33 | eqtr3d 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: fndmdifcom 5709 |
| Copyright terms: Public domain | W3C validator |