ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmdif Unicode version

Theorem fndmdif 5708
Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
fndmdif  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
Distinct variable groups:    x, F    x, G    x, A

Proof of Theorem fndmdif
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 difss 3307 . . . . 5  |-  ( F 
\  G )  C_  F
2 dmss 4896 . . . . 5  |-  ( ( F  \  G ) 
C_  F  ->  dom  ( F  \  G ) 
C_  dom  F )
31, 2ax-mp 5 . . . 4  |-  dom  ( F  \  G )  C_  dom  F
4 fndm 5392 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
54adantr 276 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  F  =  A )
63, 5sseqtrid 3251 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  C_  A
)
7 dfss1 3385 . . 3  |-  ( dom  ( F  \  G
)  C_  A  <->  ( A  i^i  dom  ( F  \  G ) )  =  dom  ( F  \  G ) )
86, 7sylib 122 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  i^i  dom  ( F  \  G ) )  =  dom  ( F  \  G ) )
9 vex 2779 . . . . 5  |-  x  e. 
_V
109eldm 4894 . . . 4  |-  ( x  e.  dom  ( F 
\  G )  <->  E. y  x ( F  \  G ) y )
11 eqcom 2209 . . . . . . . 8  |-  ( ( F `  x )  =  ( G `  x )  <->  ( G `  x )  =  ( F `  x ) )
12 fnbrfvb 5642 . . . . . . . 8  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( ( G `  x )  =  ( F `  x )  <-> 
x G ( F `
 x ) ) )
1311, 12bitrid 192 . . . . . . 7  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  ( G `  x )  <-> 
x G ( F `
 x ) ) )
1413adantll 476 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( F `  x
)  =  ( G `
 x )  <->  x G
( F `  x
) ) )
1514necon3abid 2417 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( F `  x
)  =/=  ( G `
 x )  <->  -.  x G ( F `  x ) ) )
16 funfvex 5616 . . . . . . . 8  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
1716funfni 5395 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
1817adantlr 477 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( F `  x )  e.  _V )
19 breq2 4063 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
x G y  <->  x G
( F `  x
) ) )
2019notbid 669 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  ( -.  x G y  <->  -.  x G ( F `  x ) ) )
2120ceqsexgv 2909 . . . . . 6  |-  ( ( F `  x )  e.  _V  ->  ( E. y ( y  =  ( F `  x
)  /\  -.  x G y )  <->  -.  x G ( F `  x ) ) )
2218, 21syl 14 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( E. y ( y  =  ( F `  x
)  /\  -.  x G y )  <->  -.  x G ( F `  x ) ) )
23 eqcom 2209 . . . . . . . . . 10  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
24 fnbrfvb 5642 . . . . . . . . . 10  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F `  x )  =  y  <-> 
x F y ) )
2523, 24bitrid 192 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( y  =  ( F `  x )  <-> 
x F y ) )
2625adantlr 477 . . . . . . . 8  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
y  =  ( F `
 x )  <->  x F
y ) )
2726anbi1d 465 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( y  =  ( F `  x )  /\  -.  x G y )  <->  ( x F y  /\  -.  x G y ) ) )
28 brdif 4113 . . . . . . 7  |-  ( x ( F  \  G
) y  <->  ( x F y  /\  -.  x G y ) )
2927, 28bitr4di 198 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
( y  =  ( F `  x )  /\  -.  x G y )  <->  x ( F  \  G ) y ) )
3029exbidv 1849 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( E. y ( y  =  ( F `  x
)  /\  -.  x G y )  <->  E. y  x ( F  \  G ) y ) )
3115, 22, 303bitr2rd 217 . . . 4  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  ( E. y  x ( F  \  G ) y  <-> 
( F `  x
)  =/=  ( G `
 x ) ) )
3210, 31bitrid 192 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  x  e.  A )  ->  (
x  e.  dom  ( F  \  G )  <->  ( F `  x )  =/=  ( G `  x )
) )
3332rabbi2dva 3389 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A  i^i  dom  ( F  \  G ) )  =  { x  e.  A  |  ( F `  x )  =/=  ( G `  x
) } )
348, 33eqtr3d 2242 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  dom  ( F  \  G )  =  {
x  e.  A  | 
( F `  x
)  =/=  ( G `
 x ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178    =/= wne 2378   {crab 2490   _Vcvv 2776    \ cdif 3171    i^i cin 3173    C_ wss 3174   class class class wbr 4059   dom cdm 4693    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by:  fndmdifcom  5709
  Copyright terms: Public domain W3C validator