| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndmdif | Unicode version | ||
| Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| fndmdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3290 |
. . . . 5
| |
| 2 | dmss 4866 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | fndm 5358 |
. . . . 5
| |
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | 3, 5 | sseqtrid 3234 |
. . 3
|
| 7 | dfss1 3368 |
. . 3
| |
| 8 | 6, 7 | sylib 122 |
. 2
|
| 9 | vex 2766 |
. . . . 5
| |
| 10 | 9 | eldm 4864 |
. . . 4
|
| 11 | eqcom 2198 |
. . . . . . . 8
| |
| 12 | fnbrfvb 5604 |
. . . . . . . 8
| |
| 13 | 11, 12 | bitrid 192 |
. . . . . . 7
|
| 14 | 13 | adantll 476 |
. . . . . 6
|
| 15 | 14 | necon3abid 2406 |
. . . . 5
|
| 16 | funfvex 5578 |
. . . . . . . 8
| |
| 17 | 16 | funfni 5361 |
. . . . . . 7
|
| 18 | 17 | adantlr 477 |
. . . . . 6
|
| 19 | breq2 4038 |
. . . . . . . 8
| |
| 20 | 19 | notbid 668 |
. . . . . . 7
|
| 21 | 20 | ceqsexgv 2893 |
. . . . . 6
|
| 22 | 18, 21 | syl 14 |
. . . . 5
|
| 23 | eqcom 2198 |
. . . . . . . . . 10
| |
| 24 | fnbrfvb 5604 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | bitrid 192 |
. . . . . . . . 9
|
| 26 | 25 | adantlr 477 |
. . . . . . . 8
|
| 27 | 26 | anbi1d 465 |
. . . . . . 7
|
| 28 | brdif 4087 |
. . . . . . 7
| |
| 29 | 27, 28 | bitr4di 198 |
. . . . . 6
|
| 30 | 29 | exbidv 1839 |
. . . . 5
|
| 31 | 15, 22, 30 | 3bitr2rd 217 |
. . . 4
|
| 32 | 10, 31 | bitrid 192 |
. . 3
|
| 33 | 32 | rabbi2dva 3372 |
. 2
|
| 34 | 8, 33 | eqtr3d 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 |
| This theorem is referenced by: fndmdifcom 5671 |
| Copyright terms: Public domain | W3C validator |