| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndmdif | Unicode version | ||
| Description: Two ways to express the locus of differences between two functions. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| Ref | Expression |
|---|---|
| fndmdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 3330 |
. . . . 5
| |
| 2 | dmss 4921 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | fndm 5419 |
. . . . 5
| |
| 5 | 4 | adantr 276 |
. . . 4
|
| 6 | 3, 5 | sseqtrid 3274 |
. . 3
|
| 7 | dfss1 3408 |
. . 3
| |
| 8 | 6, 7 | sylib 122 |
. 2
|
| 9 | vex 2802 |
. . . . 5
| |
| 10 | 9 | eldm 4919 |
. . . 4
|
| 11 | eqcom 2231 |
. . . . . . . 8
| |
| 12 | fnbrfvb 5671 |
. . . . . . . 8
| |
| 13 | 11, 12 | bitrid 192 |
. . . . . . 7
|
| 14 | 13 | adantll 476 |
. . . . . 6
|
| 15 | 14 | necon3abid 2439 |
. . . . 5
|
| 16 | funfvex 5643 |
. . . . . . . 8
| |
| 17 | 16 | funfni 5422 |
. . . . . . 7
|
| 18 | 17 | adantlr 477 |
. . . . . 6
|
| 19 | breq2 4086 |
. . . . . . . 8
| |
| 20 | 19 | notbid 671 |
. . . . . . 7
|
| 21 | 20 | ceqsexgv 2932 |
. . . . . 6
|
| 22 | 18, 21 | syl 14 |
. . . . 5
|
| 23 | eqcom 2231 |
. . . . . . . . . 10
| |
| 24 | fnbrfvb 5671 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | bitrid 192 |
. . . . . . . . 9
|
| 26 | 25 | adantlr 477 |
. . . . . . . 8
|
| 27 | 26 | anbi1d 465 |
. . . . . . 7
|
| 28 | brdif 4136 |
. . . . . . 7
| |
| 29 | 27, 28 | bitr4di 198 |
. . . . . 6
|
| 30 | 29 | exbidv 1871 |
. . . . 5
|
| 31 | 15, 22, 30 | 3bitr2rd 217 |
. . . 4
|
| 32 | 10, 31 | bitrid 192 |
. . 3
|
| 33 | 32 | rabbi2dva 3412 |
. 2
|
| 34 | 8, 33 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: fndmdifcom 5740 |
| Copyright terms: Public domain | W3C validator |