ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ngtmnft Unicode version

Theorem ngtmnft 9753
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
ngtmnft  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )

Proof of Theorem ngtmnft
StepHypRef Expression
1 elxr 9712 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renemnf 7947 . . . . 5  |-  ( A  e.  RR  ->  A  =/= -oo )
32neneqd 2357 . . . 4  |-  ( A  e.  RR  ->  -.  A  = -oo )
4 mnflt 9719 . . . . 5  |-  ( A  e.  RR  -> -oo  <  A )
5 notnot 619 . . . . 5  |-  ( -oo  <  A  ->  -.  -. -oo  <  A )
64, 5syl 14 . . . 4  |-  ( A  e.  RR  ->  -.  -. -oo  <  A )
73, 62falsed 692 . . 3  |-  ( A  e.  RR  ->  ( A  = -oo  <->  -. -oo  <  A ) )
8 pnfnemnf 7953 . . . . . 6  |- +oo  =/= -oo
9 neeq1 2349 . . . . . 6  |-  ( A  = +oo  ->  ( A  =/= -oo  <-> +oo  =/= -oo )
)
108, 9mpbiri 167 . . . . 5  |-  ( A  = +oo  ->  A  =/= -oo )
1110neneqd 2357 . . . 4  |-  ( A  = +oo  ->  -.  A  = -oo )
12 mnfltpnf 9721 . . . . . . 7  |- -oo  < +oo
13 breq2 3986 . . . . . . 7  |-  ( A  = +oo  ->  ( -oo  <  A  <-> -oo  < +oo ) )
1412, 13mpbiri 167 . . . . . 6  |-  ( A  = +oo  -> -oo  <  A )
1514necon3bi 2386 . . . . 5  |-  ( -. -oo  <  A  ->  A  =/= +oo )
1615necon2bi 2391 . . . 4  |-  ( A  = +oo  ->  -.  -. -oo  <  A )
1711, 162falsed 692 . . 3  |-  ( A  = +oo  ->  ( A  = -oo  <->  -. -oo  <  A ) )
18 id 19 . . . 4  |-  ( A  = -oo  ->  A  = -oo )
19 mnfxr 7955 . . . . . 6  |- -oo  e.  RR*
20 xrltnr 9715 . . . . . 6  |-  ( -oo  e.  RR*  ->  -. -oo  < -oo )
2119, 20ax-mp 5 . . . . 5  |-  -. -oo  < -oo
22 breq2 3986 . . . . 5  |-  ( A  = -oo  ->  ( -oo  <  A  <-> -oo  < -oo ) )
2321, 22mtbiri 665 . . . 4  |-  ( A  = -oo  ->  -. -oo 
<  A )
2418, 232thd 174 . . 3  |-  ( A  = -oo  ->  ( A  = -oo  <->  -. -oo  <  A ) )
257, 17, 243jaoi 1293 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A  = -oo  <->  -. -oo  <  A ) )
261, 25sylbi 120 1  |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo  <  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ w3o 967    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982   RRcr 7752   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932    < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938
This theorem is referenced by:  nmnfgt  9754  ge0nemnf  9760  xleaddadd  9823
  Copyright terms: Public domain W3C validator