| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ngtmnft | Unicode version | ||
| Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| ngtmnft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9933 |
. 2
| |
| 2 | renemnf 8156 |
. . . . 5
| |
| 3 | 2 | neneqd 2399 |
. . . 4
|
| 4 | mnflt 9940 |
. . . . 5
| |
| 5 | notnot 630 |
. . . . 5
| |
| 6 | 4, 5 | syl 14 |
. . . 4
|
| 7 | 3, 6 | 2falsed 704 |
. . 3
|
| 8 | pnfnemnf 8162 |
. . . . . 6
| |
| 9 | neeq1 2391 |
. . . . . 6
| |
| 10 | 8, 9 | mpbiri 168 |
. . . . 5
|
| 11 | 10 | neneqd 2399 |
. . . 4
|
| 12 | mnfltpnf 9942 |
. . . . . . 7
| |
| 13 | breq2 4063 |
. . . . . . 7
| |
| 14 | 12, 13 | mpbiri 168 |
. . . . . 6
|
| 15 | 14 | necon3bi 2428 |
. . . . 5
|
| 16 | 15 | necon2bi 2433 |
. . . 4
|
| 17 | 11, 16 | 2falsed 704 |
. . 3
|
| 18 | id 19 |
. . . 4
| |
| 19 | mnfxr 8164 |
. . . . . 6
| |
| 20 | xrltnr 9936 |
. . . . . 6
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . 5
|
| 22 | breq2 4063 |
. . . . 5
| |
| 23 | 21, 22 | mtbiri 677 |
. . . 4
|
| 24 | 18, 23 | 2thd 175 |
. . 3
|
| 25 | 7, 17, 24 | 3jaoi 1316 |
. 2
|
| 26 | 1, 25 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltirr 8072 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 |
| This theorem is referenced by: nmnfgt 9975 ge0nemnf 9981 xleaddadd 10044 |
| Copyright terms: Public domain | W3C validator |