| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ngtmnft | Unicode version | ||
| Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| ngtmnft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9898 |
. 2
| |
| 2 | renemnf 8121 |
. . . . 5
| |
| 3 | 2 | neneqd 2397 |
. . . 4
|
| 4 | mnflt 9905 |
. . . . 5
| |
| 5 | notnot 630 |
. . . . 5
| |
| 6 | 4, 5 | syl 14 |
. . . 4
|
| 7 | 3, 6 | 2falsed 704 |
. . 3
|
| 8 | pnfnemnf 8127 |
. . . . . 6
| |
| 9 | neeq1 2389 |
. . . . . 6
| |
| 10 | 8, 9 | mpbiri 168 |
. . . . 5
|
| 11 | 10 | neneqd 2397 |
. . . 4
|
| 12 | mnfltpnf 9907 |
. . . . . . 7
| |
| 13 | breq2 4048 |
. . . . . . 7
| |
| 14 | 12, 13 | mpbiri 168 |
. . . . . 6
|
| 15 | 14 | necon3bi 2426 |
. . . . 5
|
| 16 | 15 | necon2bi 2431 |
. . . 4
|
| 17 | 11, 16 | 2falsed 704 |
. . 3
|
| 18 | id 19 |
. . . 4
| |
| 19 | mnfxr 8129 |
. . . . . 6
| |
| 20 | xrltnr 9901 |
. . . . . 6
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . 5
|
| 22 | breq2 4048 |
. . . . 5
| |
| 23 | 21, 22 | mtbiri 677 |
. . . 4
|
| 24 | 18, 23 | 2thd 175 |
. . 3
|
| 25 | 7, 17, 24 | 3jaoi 1316 |
. 2
|
| 26 | 1, 25 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-pre-ltirr 8037 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 |
| This theorem is referenced by: nmnfgt 9940 ge0nemnf 9946 xleaddadd 10009 |
| Copyright terms: Public domain | W3C validator |