ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1ne3 Unicode version

Theorem sucpw1ne3 7161
Description: Negated excluded middle implies that the successor of the power set of  1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1ne3  |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )

Proof of Theorem sucpw1ne3
StepHypRef Expression
1 pw1nel3 7160 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
2 1oex 6368 . . . . . 6  |-  1o  e.  _V
32pwex 4144 . . . . 5  |-  ~P 1o  e.  _V
43sucid 4377 . . . 4  |-  ~P 1o  e.  suc  ~P 1o
5 eleq2 2221 . . . 4  |-  ( suc 
~P 1o  =  3o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  3o ) )
64, 5mpbii 147 . . 3  |-  ( suc 
~P 1o  =  3o 
->  ~P 1o  e.  3o )
76necon3bi 2377 . 2  |-  ( -. 
~P 1o  e.  3o  ->  suc  ~P 1o  =/=  3o )
81, 7syl 14 1  |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1335    e. wcel 2128    =/= wne 2327   ~Pcpw 3543  EXMIDwem 4155   suc csuc 4325   1oc1o 6353   3oc3o 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-tr 4063  df-exmid 4156  df-iord 4326  df-on 4328  df-suc 4331  df-1o 6360  df-2o 6361  df-3o 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator