ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1ne3 Unicode version

Theorem sucpw1ne3 7417
Description: Negated excluded middle implies that the successor of the power set of  1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1ne3  |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )

Proof of Theorem sucpw1ne3
StepHypRef Expression
1 pw1nel3 7416 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
2 1oex 6570 . . . . . 6  |-  1o  e.  _V
32pwex 4267 . . . . 5  |-  ~P 1o  e.  _V
43sucid 4508 . . . 4  |-  ~P 1o  e.  suc  ~P 1o
5 eleq2 2293 . . . 4  |-  ( suc 
~P 1o  =  3o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  3o ) )
64, 5mpbii 148 . . 3  |-  ( suc 
~P 1o  =  3o 
->  ~P 1o  e.  3o )
76necon3bi 2450 . 2  |-  ( -. 
~P 1o  e.  3o  ->  suc  ~P 1o  =/=  3o )
81, 7syl 14 1  |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   ~Pcpw 3649  EXMIDwem 4278   suc csuc 4456   1oc1o 6555   3oc3o 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-exmid 4279  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6562  df-2o 6563  df-3o 6564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator