ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1ne3 Unicode version

Theorem sucpw1ne3 7188
Description: Negated excluded middle implies that the successor of the power set of  1o is not three . (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
sucpw1ne3  |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )

Proof of Theorem sucpw1ne3
StepHypRef Expression
1 pw1nel3 7187 . 2  |-  ( -. EXMID  ->  -.  ~P 1o  e.  3o )
2 1oex 6392 . . . . . 6  |-  1o  e.  _V
32pwex 4162 . . . . 5  |-  ~P 1o  e.  _V
43sucid 4395 . . . 4  |-  ~P 1o  e.  suc  ~P 1o
5 eleq2 2230 . . . 4  |-  ( suc 
~P 1o  =  3o 
->  ( ~P 1o  e.  suc  ~P 1o  <->  ~P 1o  e.  3o ) )
64, 5mpbii 147 . . 3  |-  ( suc 
~P 1o  =  3o 
->  ~P 1o  e.  3o )
76necon3bi 2386 . 2  |-  ( -. 
~P 1o  e.  3o  ->  suc  ~P 1o  =/=  3o )
81, 7syl 14 1  |-  ( -. EXMID  ->  suc  ~P 1o  =/=  3o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    e. wcel 2136    =/= wne 2336   ~Pcpw 3559  EXMIDwem 4173   suc csuc 4343   1oc1o 6377   3oc3o 6379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-exmid 4174  df-iord 4344  df-on 4346  df-suc 4349  df-1o 6384  df-2o 6385  df-3o 6386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator