ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwne Unicode version

Theorem pwne 4193
Description: No set equals its power set. The sethood antecedent is necessary; compare pwv 3838. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
pwne  |-  ( A  e.  V  ->  ~P A  =/=  A )

Proof of Theorem pwne
StepHypRef Expression
1 pwnss 4192 . 2  |-  ( A  e.  V  ->  -.  ~P A  C_  A )
2 eqimss 3237 . . 3  |-  ( ~P A  =  A  ->  ~P A  C_  A )
32necon3bi 2417 . 2  |-  ( -. 
~P A  C_  A  ->  ~P A  =/=  A
)
41, 3syl 14 1  |-  ( A  e.  V  ->  ~P A  =/=  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2167    =/= wne 2367    C_ wss 3157   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  pnfnemnf  8081
  Copyright terms: Public domain W3C validator