ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltpnft Unicode version

Theorem nltpnft 9936
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
nltpnft  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )

Proof of Theorem nltpnft
StepHypRef Expression
1 elxr 9898 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 8120 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2397 . . . 4  |-  ( A  e.  RR  ->  -.  A  = +oo )
4 ltpnf 9902 . . . . 5  |-  ( A  e.  RR  ->  A  < +oo )
5 notnot 630 . . . . 5  |-  ( A  < +oo  ->  -.  -.  A  < +oo )
64, 5syl 14 . . . 4  |-  ( A  e.  RR  ->  -.  -.  A  < +oo )
73, 62falsed 704 . . 3  |-  ( A  e.  RR  ->  ( A  = +oo  <->  -.  A  < +oo ) )
8 id 19 . . . 4  |-  ( A  = +oo  ->  A  = +oo )
9 pnfxr 8125 . . . . . 6  |- +oo  e.  RR*
10 xrltnr 9901 . . . . . 6  |-  ( +oo  e.  RR*  ->  -. +oo  < +oo )
119, 10ax-mp 5 . . . . 5  |-  -. +oo  < +oo
12 breq1 4047 . . . . 5  |-  ( A  = +oo  ->  ( A  < +oo  <-> +oo  < +oo )
)
1311, 12mtbiri 677 . . . 4  |-  ( A  = +oo  ->  -.  A  < +oo )
148, 132thd 175 . . 3  |-  ( A  = +oo  ->  ( A  = +oo  <->  -.  A  < +oo ) )
15 mnfnepnf 8128 . . . . . 6  |- -oo  =/= +oo
1615neii 2378 . . . . 5  |-  -. -oo  = +oo
17 eqeq1 2212 . . . . 5  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1816, 17mtbiri 677 . . . 4  |-  ( A  = -oo  ->  -.  A  = +oo )
19 mnfltpnf 9907 . . . . . . 7  |- -oo  < +oo
20 breq1 4047 . . . . . . 7  |-  ( A  = -oo  ->  ( A  < +oo  <-> -oo  < +oo )
)
2119, 20mpbiri 168 . . . . . 6  |-  ( A  = -oo  ->  A  < +oo )
2221necon3bi 2426 . . . . 5  |-  ( -.  A  < +oo  ->  A  =/= -oo )
2322necon2bi 2431 . . . 4  |-  ( A  = -oo  ->  -.  -.  A  < +oo )
2418, 232falsed 704 . . 3  |-  ( A  = -oo  ->  ( A  = +oo  <->  -.  A  < +oo ) )
257, 14, 243jaoi 1316 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A  = +oo  <->  -.  A  < +oo ) )
261, 25sylbi 121 1  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ w3o 980    = wceq 1373    e. wcel 2176   class class class wbr 4044   RRcr 7924   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112
This theorem is referenced by:  npnflt  9937  xgepnf  9938  xrmaxiflemlub  11559
  Copyright terms: Public domain W3C validator