ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltpnft Unicode version

Theorem nltpnft 9906
Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
nltpnft  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )

Proof of Theorem nltpnft
StepHypRef Expression
1 elxr 9868 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 8091 . . . . 5  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2388 . . . 4  |-  ( A  e.  RR  ->  -.  A  = +oo )
4 ltpnf 9872 . . . . 5  |-  ( A  e.  RR  ->  A  < +oo )
5 notnot 630 . . . . 5  |-  ( A  < +oo  ->  -.  -.  A  < +oo )
64, 5syl 14 . . . 4  |-  ( A  e.  RR  ->  -.  -.  A  < +oo )
73, 62falsed 703 . . 3  |-  ( A  e.  RR  ->  ( A  = +oo  <->  -.  A  < +oo ) )
8 id 19 . . . 4  |-  ( A  = +oo  ->  A  = +oo )
9 pnfxr 8096 . . . . . 6  |- +oo  e.  RR*
10 xrltnr 9871 . . . . . 6  |-  ( +oo  e.  RR*  ->  -. +oo  < +oo )
119, 10ax-mp 5 . . . . 5  |-  -. +oo  < +oo
12 breq1 4037 . . . . 5  |-  ( A  = +oo  ->  ( A  < +oo  <-> +oo  < +oo )
)
1311, 12mtbiri 676 . . . 4  |-  ( A  = +oo  ->  -.  A  < +oo )
148, 132thd 175 . . 3  |-  ( A  = +oo  ->  ( A  = +oo  <->  -.  A  < +oo ) )
15 mnfnepnf 8099 . . . . . 6  |- -oo  =/= +oo
1615neii 2369 . . . . 5  |-  -. -oo  = +oo
17 eqeq1 2203 . . . . 5  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1816, 17mtbiri 676 . . . 4  |-  ( A  = -oo  ->  -.  A  = +oo )
19 mnfltpnf 9877 . . . . . . 7  |- -oo  < +oo
20 breq1 4037 . . . . . . 7  |-  ( A  = -oo  ->  ( A  < +oo  <-> -oo  < +oo )
)
2119, 20mpbiri 168 . . . . . 6  |-  ( A  = -oo  ->  A  < +oo )
2221necon3bi 2417 . . . . 5  |-  ( -.  A  < +oo  ->  A  =/= -oo )
2322necon2bi 2422 . . . 4  |-  ( A  = -oo  ->  -.  -.  A  < +oo )
2418, 232falsed 703 . . 3  |-  ( A  = -oo  ->  ( A  = +oo  <->  -.  A  < +oo ) )
257, 14, 243jaoi 1314 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A  = +oo  <->  -.  A  < +oo ) )
261, 25sylbi 121 1  |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2167   class class class wbr 4034   RRcr 7895   +oocpnf 8075   -oocmnf 8076   RR*cxr 8077    < clt 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083
This theorem is referenced by:  npnflt  9907  xgepnf  9908  xrmaxiflemlub  11430
  Copyright terms: Public domain W3C validator