ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ai Unicode version

Theorem necon3ai 2389
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ai.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
necon3ai  |-  ( A  =/=  B  ->  -.  ph )

Proof of Theorem necon3ai
StepHypRef Expression
1 df-ne 2341 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon3ai.1 . . 3  |-  ( ph  ->  A  =  B )
32con3i 627 . 2  |-  ( -.  A  =  B  ->  -.  ph )
41, 3sylbi 120 1  |-  ( A  =/=  B  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-ne 2341
This theorem is referenced by:  nelsn  3618  disjsn2  3646  0nelxp  4639  fvunsng  5690  map0b  6665  difinfsnlem  7076  hashprg  10743  gcd1  11942  gcdzeq  11977  phimullem  12179  pcgcd1  12281  pc2dvds  12283  pockthlem  12308  2sqlem8  13753
  Copyright terms: Public domain W3C validator