ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ai Unicode version

Theorem necon3ai 2424
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ai.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
necon3ai  |-  ( A  =/=  B  ->  -.  ph )

Proof of Theorem necon3ai
StepHypRef Expression
1 df-ne 2376 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon3ai.1 . . 3  |-  ( ph  ->  A  =  B )
32con3i 633 . 2  |-  ( -.  A  =  B  ->  -.  ph )
41, 3sylbi 121 1  |-  ( A  =/=  B  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1372    =/= wne 2375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2376
This theorem is referenced by:  nelsn  3667  disjsn2  3695  0nelxp  4702  fvunsng  5777  map0b  6773  difinfsnlem  7200  hashprg  10951  gcd1  12279  gcdzeq  12314  phimullem  12518  pcgcd1  12622  pc2dvds  12624  pockthlem  12650  znrrg  14393  mpodvdsmulf1o  15433  2sqlem8  15571
  Copyright terms: Public domain W3C validator