ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ai Unicode version

Theorem necon3ai 2413
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ai.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
necon3ai  |-  ( A  =/=  B  ->  -.  ph )

Proof of Theorem necon3ai
StepHypRef Expression
1 df-ne 2365 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon3ai.1 . . 3  |-  ( ph  ->  A  =  B )
32con3i 633 . 2  |-  ( -.  A  =  B  ->  -.  ph )
41, 3sylbi 121 1  |-  ( A  =/=  B  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    =/= wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2365
This theorem is referenced by:  nelsn  3654  disjsn2  3682  0nelxp  4688  fvunsng  5753  map0b  6743  difinfsnlem  7160  hashprg  10882  gcd1  12127  gcdzeq  12162  phimullem  12366  pcgcd1  12469  pc2dvds  12471  pockthlem  12497  znrrg  14159  2sqlem8  15280
  Copyright terms: Public domain W3C validator