ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3ai Unicode version

Theorem necon3ai 2426
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Hypothesis
Ref Expression
necon3ai.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
necon3ai  |-  ( A  =/=  B  ->  -.  ph )

Proof of Theorem necon3ai
StepHypRef Expression
1 df-ne 2378 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon3ai.1 . . 3  |-  ( ph  ->  A  =  B )
32con3i 633 . 2  |-  ( -.  A  =  B  ->  -.  ph )
41, 3sylbi 121 1  |-  ( A  =/=  B  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373    =/= wne 2377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2378
This theorem is referenced by:  nelsn  3673  disjsn2  3701  0nelxp  4711  fvunsng  5791  map0b  6787  difinfsnlem  7216  hashprg  10975  gcd1  12383  gcdzeq  12418  phimullem  12622  pcgcd1  12726  pc2dvds  12728  pockthlem  12754  znrrg  14497  mpodvdsmulf1o  15537  2sqlem8  15675
  Copyright terms: Public domain W3C validator