Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3ai | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 23-May-2007.) (Proof rewritten by Jim Kingdon, 15-May-2018.) |
Ref | Expression |
---|---|
necon3ai.1 |
Ref | Expression |
---|---|
necon3ai |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2346 | . 2 | |
2 | necon3ai.1 | . . 3 | |
3 | 2 | con3i 632 | . 2 |
4 | 1, 3 | sylbi 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1353 wne 2345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 df-ne 2346 |
This theorem is referenced by: nelsn 3624 disjsn2 3652 0nelxp 4648 fvunsng 5702 map0b 6677 difinfsnlem 7088 hashprg 10754 gcd1 11953 gcdzeq 11988 phimullem 12190 pcgcd1 12292 pc2dvds 12294 pockthlem 12319 2sqlem8 14028 |
Copyright terms: Public domain | W3C validator |