| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq2 | Unicode version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2206 |
. . 3
| |
| 2 | 1 | notbid 668 |
. 2
|
| 3 | df-ne 2368 |
. 2
| |
| 4 | df-ne 2368 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: neeq2i 2383 neeq2d 2386 disji2 4027 fodjuomnilemdc 7211 netap 7323 2oneel 7325 2omotaplemap 7326 2omotaplemst 7327 exmidapne 7329 xrlttri3 9874 isnzr2 13750 neapmkv 15722 neap0mkv 15723 ltlenmkv 15724 |
| Copyright terms: Public domain | W3C validator |