| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq2 | Unicode version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2239 |
. . 3
| |
| 2 | 1 | notbid 671 |
. 2
|
| 3 | df-ne 2401 |
. 2
| |
| 4 | df-ne 2401 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: neeq2i 2416 neeq2d 2419 disji2 4075 fodjuomnilemdc 7311 netap 7440 2oneel 7442 2omotaplemap 7443 2omotaplemst 7444 exmidapne 7446 xrlttri3 9993 hashdmprop2dom 11066 fun2dmnop0 11069 isnzr2 14148 umgrvad2edg 16009 neapmkv 16436 neap0mkv 16437 ltlenmkv 16438 |
| Copyright terms: Public domain | W3C validator |