ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeq2 Unicode version

Theorem neeq2 2338
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.)
Assertion
Ref Expression
neeq2  |-  ( A  =  B  ->  ( C  =/=  A  <->  C  =/=  B ) )

Proof of Theorem neeq2
StepHypRef Expression
1 eqeq2 2164 . . 3  |-  ( A  =  B  ->  ( C  =  A  <->  C  =  B ) )
21notbid 657 . 2  |-  ( A  =  B  ->  ( -.  C  =  A  <->  -.  C  =  B ) )
3 df-ne 2325 . 2  |-  ( C  =/=  A  <->  -.  C  =  A )
4 df-ne 2325 . 2  |-  ( C  =/=  B  <->  -.  C  =  B )
52, 3, 43bitr4g 222 1  |-  ( A  =  B  ->  ( C  =/=  A  <->  C  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    = wceq 1332    =/= wne 2324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1424  ax-gen 1426  ax-4 1487  ax-17 1503  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-cleq 2147  df-ne 2325
This theorem is referenced by:  neeq2i  2340  neeq2d  2343  disji2  3954  fodjuomnilemdc  7066  xrlttri3  9682  neapmkv  13579
  Copyright terms: Public domain W3C validator