| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq2 | Unicode version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2217 |
. . 3
| |
| 2 | 1 | notbid 669 |
. 2
|
| 3 | df-ne 2379 |
. 2
| |
| 4 | df-ne 2379 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-ne 2379 |
| This theorem is referenced by: neeq2i 2394 neeq2d 2397 disji2 4051 fodjuomnilemdc 7272 netap 7401 2oneel 7403 2omotaplemap 7404 2omotaplemst 7405 exmidapne 7407 xrlttri3 9954 hashdmprop2dom 11026 fun2dmnop0 11029 isnzr2 14061 neapmkv 16209 neap0mkv 16210 ltlenmkv 16211 |
| Copyright terms: Public domain | W3C validator |