| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neeq2 | Unicode version | ||
| Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| neeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2215 |
. . 3
| |
| 2 | 1 | notbid 669 |
. 2
|
| 3 | df-ne 2377 |
. 2
| |
| 4 | df-ne 2377 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-ne 2377 |
| This theorem is referenced by: neeq2i 2392 neeq2d 2395 disji2 4037 fodjuomnilemdc 7246 netap 7366 2oneel 7368 2omotaplemap 7369 2omotaplemst 7370 exmidapne 7372 xrlttri3 9919 hashdmprop2dom 10989 fun2dmnop0 10992 isnzr2 13946 neapmkv 16011 neap0mkv 16012 ltlenmkv 16013 |
| Copyright terms: Public domain | W3C validator |