Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neeq2 | Unicode version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
neeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2164 | . . 3 | |
2 | 1 | notbid 657 | . 2 |
3 | df-ne 2325 | . 2 | |
4 | df-ne 2325 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1332 wne 2324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1424 ax-gen 1426 ax-4 1487 ax-17 1503 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 df-ne 2325 |
This theorem is referenced by: neeq2i 2340 neeq2d 2343 disji2 3954 fodjuomnilemdc 7066 xrlttri3 9682 neapmkv 13579 |
Copyright terms: Public domain | W3C validator |