ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neirr Unicode version

Theorem neirr 2373
Description: No class is unequal to itself. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Assertion
Ref Expression
neirr  |-  -.  A  =/=  A

Proof of Theorem neirr
StepHypRef Expression
1 eqid 2193 . . 3  |-  A  =  A
21notnoti 646 . 2  |-  -.  -.  A  =  A
3 df-ne 2365 . . 3  |-  ( A  =/=  A  <->  -.  A  =  A )
43notbii 669 . 2  |-  ( -.  A  =/=  A  <->  -.  -.  A  =  A )
52, 4mpbir 146 1  |-  -.  A  =/=  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364    =/= wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-gen 1460  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-ne 2365
This theorem is referenced by:  neldifsn  3748  netap  7314  2omotaplemap  7317  0nnq  7424  1nuz2  9671
  Copyright terms: Public domain W3C validator