| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > neirr | Unicode version | ||
| Description: No class is unequal to itself. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof rewritten by Jim Kingdon, 15-May-2018.) | 
| Ref | Expression | 
|---|---|
| neirr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. . 3
 | |
| 2 | 1 | notnoti 646 | 
. 2
 | 
| 3 | df-ne 2368 | 
. . 3
 | |
| 4 | 3 | notbii 669 | 
. 2
 | 
| 5 | 2, 4 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-gen 1463 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 | 
| This theorem is referenced by: neldifsn 3752 netap 7321 2omotaplemap 7324 0nnq 7431 1nuz2 9680 | 
| Copyright terms: Public domain | W3C validator |