ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neirr Unicode version

Theorem neirr 2264
Description: No class is unequal to itself. (Contributed by Stefan O'Rear, 1-Jan-2015.) (Proof rewritten by Jim Kingdon, 15-May-2018.)
Assertion
Ref Expression
neirr  |-  -.  A  =/=  A

Proof of Theorem neirr
StepHypRef Expression
1 eqid 2088 . . 3  |-  A  =  A
21notnoti 609 . 2  |-  -.  -.  A  =  A
3 df-ne 2256 . . 3  |-  ( A  =/=  A  <->  -.  A  =  A )
43notbii 629 . 2  |-  ( -.  A  =/=  A  <->  -.  -.  A  =  A )
52, 4mpbir 144 1  |-  -.  A  =/=  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1289    =/= wne 2255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-gen 1383  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-cleq 2081  df-ne 2256
This theorem is referenced by:  neldifsn  3565  0nnq  6902  1nuz2  9062
  Copyright terms: Public domain W3C validator