ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neldifsn Unicode version

Theorem neldifsn 3711
Description:  A is not in  ( B  \  { A } ). (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn  |-  -.  A  e.  ( B  \  { A } )

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2349 . 2  |-  -.  A  =/=  A
2 eldifsni 3710 . 2  |-  ( A  e.  ( B  \  { A } )  ->  A  =/=  A )
31, 2mto 657 1  |-  -.  A  e.  ( B  \  { A } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2141    =/= wne 2340    \ cdif 3118   {csn 3581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-sn 3587
This theorem is referenced by:  neldifsnd  3712  findcard2s  6866  fvsetsid  12443
  Copyright terms: Public domain W3C validator