ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neldifsn Unicode version

Theorem neldifsn 3798
Description:  A is not in  ( B  \  { A } ). (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
neldifsn  |-  -.  A  e.  ( B  \  { A } )

Proof of Theorem neldifsn
StepHypRef Expression
1 neirr 2409 . 2  |-  -.  A  =/=  A
2 eldifsni 3797 . 2  |-  ( A  e.  ( B  \  { A } )  ->  A  =/=  A )
31, 2mto 666 1  |-  -.  A  e.  ( B  \  { A } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2200    =/= wne 2400    \ cdif 3194   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-sn 3672
This theorem is referenced by:  neldifsnd  3799  findcard2s  7052  fvsetsid  13066
  Copyright terms: Public domain W3C validator