ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nnq Unicode version

Theorem 0nnq 7479
Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.)
Assertion
Ref Expression
0nnq  |-  -.  (/)  e.  Q.

Proof of Theorem 0nnq
StepHypRef Expression
1 neirr 2385 . . 3  |-  -.  (/)  =/=  (/)
2 enqer 7473 . . . . 5  |-  ~Q  Er  ( N.  X.  N. )
3 erdm 6632 . . . . 5  |-  (  ~Q  Er  ( N.  X.  N. )  ->  dom  ~Q  =  ( N.  X.  N. )
)
42, 3ax-mp 5 . . . 4  |-  dom  ~Q  =  ( N.  X.  N. )
5 elqsn0 6693 . . . 4  |-  ( ( dom  ~Q  =  ( N.  X.  N. )  /\  (/)  e.  ( ( N.  X.  N. ) /.  ~Q  ) )  ->  (/) 
=/=  (/) )
64, 5mpan 424 . . 3  |-  ( (/)  e.  ( ( N.  X.  N. ) /.  ~Q  )  -> 
(/)  =/=  (/) )
71, 6mto 664 . 2  |-  -.  (/)  e.  ( ( N.  X.  N. ) /.  ~Q  )
8 df-nqqs 7463 . . 3  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
98eleq2i 2272 . 2  |-  ( (/)  e.  Q.  <->  (/)  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
107, 9mtbir 673 1  |-  -.  (/)  e.  Q.
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1373    e. wcel 2176    =/= wne 2376   (/)c0 3460    X. cxp 4674   dom cdm 4676    Er wer 6619   /.cqs 6621   N.cnpi 7387    ~Q ceq 7394   Q.cnq 7395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-mi 7421  df-enq 7462  df-nqqs 7463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator