ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneqall Unicode version

Theorem eqneqall 2357
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
eqneqall  |-  ( A  =  B  ->  ( A  =/=  B  ->  ph )
)

Proof of Theorem eqneqall
StepHypRef Expression
1 df-ne 2348 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 pm2.24 621 . 2  |-  ( A  =  B  ->  ( -.  A  =  B  ->  ph ) )
31, 2biimtrid 152 1  |-  ( A  =  B  ->  ( A  =/=  B  ->  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353    =/= wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2348
This theorem is referenced by:  eldju2ndl  7073  eldju2ndr  7074  modfzo0difsn  10397  nno  11913  prm2orodd  12128  prm23lt5  12265  dvdsprmpweqnn  12337  logbgcd1irr  14470
  Copyright terms: Public domain W3C validator