| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqneqall | Unicode version | ||
| Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
| Ref | Expression |
|---|---|
| eqneqall |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2368 |
. 2
| |
| 2 | pm2.24 622 |
. 2
| |
| 3 | 1, 2 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: eldju2ndl 7139 eldju2ndr 7140 modfzo0difsn 10489 nno 12073 prm2orodd 12304 prm23lt5 12442 dvdsprmpweqnn 12515 logbgcd1irr 15213 gausslemma2dlem0f 15305 gausslemma2dlem0i 15308 2lgs 15355 2lgsoddprm 15364 |
| Copyright terms: Public domain | W3C validator |