ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneqall Unicode version

Theorem eqneqall 2374
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
eqneqall  |-  ( A  =  B  ->  ( A  =/=  B  ->  ph )
)

Proof of Theorem eqneqall
StepHypRef Expression
1 df-ne 2365 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 pm2.24 622 . 2  |-  ( A  =  B  ->  ( -.  A  =  B  ->  ph ) )
31, 2biimtrid 152 1  |-  ( A  =  B  ->  ( A  =/=  B  ->  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    =/= wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2365
This theorem is referenced by:  eldju2ndl  7133  eldju2ndr  7134  modfzo0difsn  10469  nno  12050  prm2orodd  12267  prm23lt5  12404  dvdsprmpweqnn  12477  logbgcd1irr  15140  gausslemma2dlem0f  15211  gausslemma2dlem0i  15214  2lgs  15261  2lgsoddprm  15270
  Copyright terms: Public domain W3C validator