| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqneqall | Unicode version | ||
| Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| eqneqall | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ne 2368 | 
. 2
 | |
| 2 | pm2.24 622 | 
. 2
 | |
| 3 | 1, 2 | biimtrid 152 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-ne 2368 | 
| This theorem is referenced by: eldju2ndl 7138 eldju2ndr 7139 modfzo0difsn 10487 nno 12071 prm2orodd 12294 prm23lt5 12432 dvdsprmpweqnn 12505 logbgcd1irr 15203 gausslemma2dlem0f 15295 gausslemma2dlem0i 15298 2lgs 15345 2lgsoddprm 15354 | 
| Copyright terms: Public domain | W3C validator |