ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneqall Unicode version

Theorem eqneqall 2410
Description: A contradiction concerning equality implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.)
Assertion
Ref Expression
eqneqall  |-  ( A  =  B  ->  ( A  =/=  B  ->  ph )
)

Proof of Theorem eqneqall
StepHypRef Expression
1 df-ne 2401 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 pm2.24 624 . 2  |-  ( A  =  B  ->  ( -.  A  =  B  ->  ph ) )
31, 2biimtrid 152 1  |-  ( A  =  B  ->  ( A  =/=  B  ->  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    =/= wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in2 618
This theorem depends on definitions:  df-bi 117  df-ne 2401
This theorem is referenced by:  ssprsseq  3830  eldju2ndl  7239  eldju2ndr  7240  modfzo0difsn  10617  nno  12417  prm2orodd  12648  prm23lt5  12786  dvdsprmpweqnn  12859  logbgcd1irr  15641  gausslemma2dlem0f  15733  gausslemma2dlem0i  15736  2lgs  15783  2lgsoddprm  15792  umgrnloop2  15949  uhgr2edg  16004
  Copyright terms: Public domain W3C validator