Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcd | Unicode version |
Description: Deduce that a class does not have free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcd.1 | |
nfcd.2 |
Ref | Expression |
---|---|
nfcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcd.1 | . . 3 | |
2 | nfcd.2 | . . 3 | |
3 | 1, 2 | alrimi 1502 | . 2 |
4 | df-nfc 2288 | . 2 | |
5 | 3, 4 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1333 wnf 1440 wcel 2128 wnfc 2286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-4 1490 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-nfc 2288 |
This theorem is referenced by: nfabdw 2318 nfabd 2319 dvelimdc 2320 sbnfc2 3091 |
Copyright terms: Public domain | W3C validator |