ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcd Unicode version

Theorem nfcd 2345
Description: Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcd.1  |-  F/ y
ph
nfcd.2  |-  ( ph  ->  F/ x  y  e.  A )
Assertion
Ref Expression
nfcd  |-  ( ph  -> 
F/_ x A )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfcd
StepHypRef Expression
1 nfcd.1 . . 3  |-  F/ y
ph
2 nfcd.2 . . 3  |-  ( ph  ->  F/ x  y  e.  A )
31, 2alrimi 1546 . 2  |-  ( ph  ->  A. y F/ x  y  e.  A )
4 df-nfc 2339 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
53, 4sylibr 134 1  |-  ( ph  -> 
F/_ x A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   F/wnf 1484    e. wcel 2178   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-nfc 2339
This theorem is referenced by:  nfabdw  2369  nfabd  2370  dvelimdc  2371  sbnfc2  3162
  Copyright terms: Public domain W3C validator