ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcd Unicode version

Theorem nfcd 2303
Description: Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcd.1  |-  F/ y
ph
nfcd.2  |-  ( ph  ->  F/ x  y  e.  A )
Assertion
Ref Expression
nfcd  |-  ( ph  -> 
F/_ x A )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfcd
StepHypRef Expression
1 nfcd.1 . . 3  |-  F/ y
ph
2 nfcd.2 . . 3  |-  ( ph  ->  F/ x  y  e.  A )
31, 2alrimi 1510 . 2  |-  ( ph  ->  A. y F/ x  y  e.  A )
4 df-nfc 2297 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
53, 4sylibr 133 1  |-  ( ph  -> 
F/_ x A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   F/wnf 1448    e. wcel 2136   F/_wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-nfc 2297
This theorem is referenced by:  nfabdw  2327  nfabd  2328  dvelimdc  2329  sbnfc2  3105
  Copyright terms: Public domain W3C validator