Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfcd | Unicode version |
Description: Deduce that a class does not have free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcd.1 | |
nfcd.2 |
Ref | Expression |
---|---|
nfcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcd.1 | . . 3 | |
2 | nfcd.2 | . . 3 | |
3 | 1, 2 | alrimi 1515 | . 2 |
4 | df-nfc 2301 | . 2 | |
5 | 3, 4 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wnf 1453 wcel 2141 wnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-nfc 2301 |
This theorem is referenced by: nfabdw 2331 nfabd 2332 dvelimdc 2333 sbnfc2 3109 |
Copyright terms: Public domain | W3C validator |