ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcd Unicode version

Theorem nfcd 2307
Description: Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcd.1  |-  F/ y
ph
nfcd.2  |-  ( ph  ->  F/ x  y  e.  A )
Assertion
Ref Expression
nfcd  |-  ( ph  -> 
F/_ x A )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfcd
StepHypRef Expression
1 nfcd.1 . . 3  |-  F/ y
ph
2 nfcd.2 . . 3  |-  ( ph  ->  F/ x  y  e.  A )
31, 2alrimi 1515 . 2  |-  ( ph  ->  A. y F/ x  y  e.  A )
4 df-nfc 2301 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
53, 4sylibr 133 1  |-  ( ph  -> 
F/_ x A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   F/wnf 1453    e. wcel 2141   F/_wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-nfc 2301
This theorem is referenced by:  nfabdw  2331  nfabd  2332  dvelimdc  2333  sbnfc2  3109
  Copyright terms: Public domain W3C validator