ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimdc Unicode version

Theorem dvelimdc 2340
Description: Deduction form of dvelimc 2341. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimdc.1  |-  F/ x ph
dvelimdc.2  |-  F/ z
ph
dvelimdc.3  |-  ( ph  -> 
F/_ x A )
dvelimdc.4  |-  ( ph  -> 
F/_ z B )
dvelimdc.5  |-  ( ph  ->  ( z  =  y  ->  A  =  B ) )
Assertion
Ref Expression
dvelimdc  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x B ) )

Proof of Theorem dvelimdc
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1528 . . 3  |-  F/ w
( ph  /\  -.  A. x  x  =  y
)
2 dvelimdc.1 . . . . 5  |-  F/ x ph
3 dvelimdc.2 . . . . 5  |-  F/ z
ph
4 dvelimdc.3 . . . . . 6  |-  ( ph  -> 
F/_ x A )
54nfcrd 2333 . . . . 5  |-  ( ph  ->  F/ x  w  e.  A )
6 dvelimdc.4 . . . . . 6  |-  ( ph  -> 
F/_ z B )
76nfcrd 2333 . . . . 5  |-  ( ph  ->  F/ z  w  e.  B )
8 dvelimdc.5 . . . . . 6  |-  ( ph  ->  ( z  =  y  ->  A  =  B ) )
9 eleq2 2241 . . . . . 6  |-  ( A  =  B  ->  (
w  e.  A  <->  w  e.  B ) )
108, 9syl6 33 . . . . 5  |-  ( ph  ->  ( z  =  y  ->  ( w  e.  A  <->  w  e.  B
) ) )
112, 3, 5, 7, 10dvelimdf 2016 . . . 4  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/ x  w  e.  B
) )
1211imp 124 . . 3  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x  w  e.  B )
131, 12nfcd 2314 . 2  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x B )
1413ex 115 1  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   F/wnf 1460    e. wcel 2148   F/_wnfc 2306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308
This theorem is referenced by:  dvelimc  2341
  Copyright terms: Public domain W3C validator