ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimdc Unicode version

Theorem dvelimdc 2371
Description: Deduction form of dvelimc 2372. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimdc.1  |-  F/ x ph
dvelimdc.2  |-  F/ z
ph
dvelimdc.3  |-  ( ph  -> 
F/_ x A )
dvelimdc.4  |-  ( ph  -> 
F/_ z B )
dvelimdc.5  |-  ( ph  ->  ( z  =  y  ->  A  =  B ) )
Assertion
Ref Expression
dvelimdc  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x B ) )

Proof of Theorem dvelimdc
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1552 . . 3  |-  F/ w
( ph  /\  -.  A. x  x  =  y
)
2 dvelimdc.1 . . . . 5  |-  F/ x ph
3 dvelimdc.2 . . . . 5  |-  F/ z
ph
4 dvelimdc.3 . . . . . 6  |-  ( ph  -> 
F/_ x A )
54nfcrd 2364 . . . . 5  |-  ( ph  ->  F/ x  w  e.  A )
6 dvelimdc.4 . . . . . 6  |-  ( ph  -> 
F/_ z B )
76nfcrd 2364 . . . . 5  |-  ( ph  ->  F/ z  w  e.  B )
8 dvelimdc.5 . . . . . 6  |-  ( ph  ->  ( z  =  y  ->  A  =  B ) )
9 eleq2 2271 . . . . . 6  |-  ( A  =  B  ->  (
w  e.  A  <->  w  e.  B ) )
108, 9syl6 33 . . . . 5  |-  ( ph  ->  ( z  =  y  ->  ( w  e.  A  <->  w  e.  B
) ) )
112, 3, 5, 7, 10dvelimdf 2045 . . . 4  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/ x  w  e.  B
) )
1211imp 124 . . 3  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x  w  e.  B )
131, 12nfcd 2345 . 2  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x B )
1413ex 115 1  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   F/wnf 1484    e. wcel 2178   F/_wnfc 2337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339
This theorem is referenced by:  dvelimc  2372
  Copyright terms: Public domain W3C validator