ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimdc Unicode version

Theorem dvelimdc 2393
Description: Deduction form of dvelimc 2394. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimdc.1  |-  F/ x ph
dvelimdc.2  |-  F/ z
ph
dvelimdc.3  |-  ( ph  -> 
F/_ x A )
dvelimdc.4  |-  ( ph  -> 
F/_ z B )
dvelimdc.5  |-  ( ph  ->  ( z  =  y  ->  A  =  B ) )
Assertion
Ref Expression
dvelimdc  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x B ) )

Proof of Theorem dvelimdc
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1574 . . 3  |-  F/ w
( ph  /\  -.  A. x  x  =  y
)
2 dvelimdc.1 . . . . 5  |-  F/ x ph
3 dvelimdc.2 . . . . 5  |-  F/ z
ph
4 dvelimdc.3 . . . . . 6  |-  ( ph  -> 
F/_ x A )
54nfcrd 2386 . . . . 5  |-  ( ph  ->  F/ x  w  e.  A )
6 dvelimdc.4 . . . . . 6  |-  ( ph  -> 
F/_ z B )
76nfcrd 2386 . . . . 5  |-  ( ph  ->  F/ z  w  e.  B )
8 dvelimdc.5 . . . . . 6  |-  ( ph  ->  ( z  =  y  ->  A  =  B ) )
9 eleq2 2293 . . . . . 6  |-  ( A  =  B  ->  (
w  e.  A  <->  w  e.  B ) )
108, 9syl6 33 . . . . 5  |-  ( ph  ->  ( z  =  y  ->  ( w  e.  A  <->  w  e.  B
) ) )
112, 3, 5, 7, 10dvelimdf 2067 . . . 4  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/ x  w  e.  B
) )
1211imp 124 . . 3  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x  w  e.  B )
131, 12nfcd 2367 . 2  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x B )
1413ex 115 1  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395   F/wnf 1506    e. wcel 2200   F/_wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by:  dvelimc  2394
  Copyright terms: Public domain W3C validator