ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimdc Unicode version

Theorem dvelimdc 2242
Description: Deduction form of dvelimc 2243. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
dvelimdc.1  |-  F/ x ph
dvelimdc.2  |-  F/ z
ph
dvelimdc.3  |-  ( ph  -> 
F/_ x A )
dvelimdc.4  |-  ( ph  -> 
F/_ z B )
dvelimdc.5  |-  ( ph  ->  ( z  =  y  ->  A  =  B ) )
Assertion
Ref Expression
dvelimdc  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x B ) )

Proof of Theorem dvelimdc
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 nfv 1462 . . 3  |-  F/ w
( ph  /\  -.  A. x  x  =  y
)
2 dvelimdc.1 . . . . 5  |-  F/ x ph
3 dvelimdc.2 . . . . 5  |-  F/ z
ph
4 dvelimdc.3 . . . . . 6  |-  ( ph  -> 
F/_ x A )
54nfcrd 2236 . . . . 5  |-  ( ph  ->  F/ x  w  e.  A )
6 dvelimdc.4 . . . . . 6  |-  ( ph  -> 
F/_ z B )
76nfcrd 2236 . . . . 5  |-  ( ph  ->  F/ z  w  e.  B )
8 dvelimdc.5 . . . . . 6  |-  ( ph  ->  ( z  =  y  ->  A  =  B ) )
9 eleq2 2146 . . . . . 6  |-  ( A  =  B  ->  (
w  e.  A  <->  w  e.  B ) )
108, 9syl6 33 . . . . 5  |-  ( ph  ->  ( z  =  y  ->  ( w  e.  A  <->  w  e.  B
) ) )
112, 3, 5, 7, 10dvelimdf 1935 . . . 4  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/ x  w  e.  B
) )
1211imp 122 . . 3  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x  w  e.  B )
131, 12nfcd 2218 . 2  |-  ( (
ph  /\  -.  A. x  x  =  y )  -> 
F/_ x B )
1413ex 113 1  |-  ( ph  ->  ( -.  A. x  x  =  y  ->  F/_ x B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1283    = wceq 1285   F/wnf 1390    e. wcel 1434   F/_wnfc 2210
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-cleq 2076  df-clel 2079  df-nfc 2212
This theorem is referenced by:  dvelimc  2243
  Copyright terms: Public domain W3C validator