ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcd GIF version

Theorem nfcd 2250
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcd.1 𝑦𝜑
nfcd.2 (𝜑 → Ⅎ𝑥 𝑦𝐴)
Assertion
Ref Expression
nfcd (𝜑𝑥𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem nfcd
StepHypRef Expression
1 nfcd.1 . . 3 𝑦𝜑
2 nfcd.2 . . 3 (𝜑 → Ⅎ𝑥 𝑦𝐴)
31, 2alrimi 1485 . 2 (𝜑 → ∀𝑦𝑥 𝑦𝐴)
4 df-nfc 2244 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
53, 4sylibr 133 1 (𝜑𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1312  wnf 1419  wcel 1463  wnfc 2242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-4 1470
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-nfc 2244
This theorem is referenced by:  nfabd  2274  dvelimdc  2275  sbnfc2  3026
  Copyright terms: Public domain W3C validator