ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbnfc2 Unicode version

Theorem sbnfc2 3145
Description: Two ways of expressing " x is (effectively) not free in  A." (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbnfc2  |-  ( F/_ x A  <->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A )
Distinct variable groups:    x, y, z   
y, A, z
Allowed substitution hint:    A( x)

Proof of Theorem sbnfc2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . 5  |-  y  e. 
_V
2 csbtt 3096 . . . . 5  |-  ( ( y  e.  _V  /\  F/_ x A )  ->  [_ y  /  x ]_ A  =  A
)
31, 2mpan 424 . . . 4  |-  ( F/_ x A  ->  [_ y  /  x ]_ A  =  A )
4 vex 2766 . . . . 5  |-  z  e. 
_V
5 csbtt 3096 . . . . 5  |-  ( ( z  e.  _V  /\  F/_ x A )  ->  [_ z  /  x ]_ A  =  A
)
64, 5mpan 424 . . . 4  |-  ( F/_ x A  ->  [_ z  /  x ]_ A  =  A )
73, 6eqtr4d 2232 . . 3  |-  ( F/_ x A  ->  [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A )
87alrimivv 1889 . 2  |-  ( F/_ x A  ->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A
)
9 nfv 1542 . . 3  |-  F/ w A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A
10 eleq2 2260 . . . . . 6  |-  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  ( w  e.  [_ y  /  x ]_ A  <->  w  e.  [_ z  /  x ]_ A ) )
11 sbsbc 2993 . . . . . . 7  |-  ( [ y  /  x ]
w  e.  A  <->  [. y  /  x ]. w  e.  A
)
12 sbcel2g 3105 . . . . . . . 8  |-  ( y  e.  _V  ->  ( [. y  /  x ]. w  e.  A  <->  w  e.  [_ y  /  x ]_ A ) )
131, 12ax-mp 5 . . . . . . 7  |-  ( [. y  /  x ]. w  e.  A  <->  w  e.  [_ y  /  x ]_ A )
1411, 13bitri 184 . . . . . 6  |-  ( [ y  /  x ]
w  e.  A  <->  w  e.  [_ y  /  x ]_ A )
15 sbsbc 2993 . . . . . . 7  |-  ( [ z  /  x ]
w  e.  A  <->  [. z  /  x ]. w  e.  A
)
16 sbcel2g 3105 . . . . . . . 8  |-  ( z  e.  _V  ->  ( [. z  /  x ]. w  e.  A  <->  w  e.  [_ z  /  x ]_ A ) )
174, 16ax-mp 5 . . . . . . 7  |-  ( [. z  /  x ]. w  e.  A  <->  w  e.  [_ z  /  x ]_ A )
1815, 17bitri 184 . . . . . 6  |-  ( [ z  /  x ]
w  e.  A  <->  w  e.  [_ z  /  x ]_ A )
1910, 14, 183bitr4g 223 . . . . 5  |-  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  ( [ y  /  x ]
w  e.  A  <->  [ z  /  x ] w  e.  A ) )
20192alimi 1470 . . . 4  |-  ( A. y A. z [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A  ->  A. y A. z ( [ y  /  x ] w  e.  A  <->  [ z  /  x ] w  e.  A
) )
21 sbnf2 2000 . . . 4  |-  ( F/ x  w  e.  A  <->  A. y A. z ( [ y  /  x ] w  e.  A  <->  [ z  /  x ]
w  e.  A ) )
2220, 21sylibr 134 . . 3  |-  ( A. y A. z [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A  ->  F/ x  w  e.  A )
239, 22nfcd 2334 . 2  |-  ( A. y A. z [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A  ->  F/_ x A )
248, 23impbii 126 1  |-  ( F/_ x A  <->  A. y A. z [_ y  /  x ]_ A  =  [_ z  /  x ]_ A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362    = wceq 1364   F/wnf 1474   [wsb 1776    e. wcel 2167   F/_wnfc 2326   _Vcvv 2763   [.wsbc 2989   [_csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  eusvnf  4488
  Copyright terms: Public domain W3C validator