Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbnfc2 | Unicode version |
Description: Two ways of expressing " is (effectively) not free in ." (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
sbnfc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 | |
2 | csbtt 3057 | . . . . 5 | |
3 | 1, 2 | mpan 421 | . . . 4 |
4 | vex 2729 | . . . . 5 | |
5 | csbtt 3057 | . . . . 5 | |
6 | 4, 5 | mpan 421 | . . . 4 |
7 | 3, 6 | eqtr4d 2201 | . . 3 |
8 | 7 | alrimivv 1863 | . 2 |
9 | nfv 1516 | . . 3 | |
10 | eleq2 2230 | . . . . . 6 | |
11 | sbsbc 2955 | . . . . . . 7 | |
12 | sbcel2g 3066 | . . . . . . . 8 | |
13 | 1, 12 | ax-mp 5 | . . . . . . 7 |
14 | 11, 13 | bitri 183 | . . . . . 6 |
15 | sbsbc 2955 | . . . . . . 7 | |
16 | sbcel2g 3066 | . . . . . . . 8 | |
17 | 4, 16 | ax-mp 5 | . . . . . . 7 |
18 | 15, 17 | bitri 183 | . . . . . 6 |
19 | 10, 14, 18 | 3bitr4g 222 | . . . . 5 |
20 | 19 | 2alimi 1444 | . . . 4 |
21 | sbnf2 1969 | . . . 4 | |
22 | 20, 21 | sylibr 133 | . . 3 |
23 | 9, 22 | nfcd 2303 | . 2 |
24 | 8, 23 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1341 wceq 1343 wnf 1448 wsb 1750 wcel 2136 wnfc 2295 cvv 2726 wsbc 2951 csb 3045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-csb 3046 |
This theorem is referenced by: eusvnf 4431 |
Copyright terms: Public domain | W3C validator |