| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcri | Unicode version | ||
| Description: Consequence of the
not-free predicate. (Note that unlike nfcr 2339, this
does not require |
| Ref | Expression |
|---|---|
| nfcri.1 |
|
| Ref | Expression |
|---|---|
| nfcri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcri.1 |
. . 3
| |
| 2 | 1 | nfcrii 2340 |
. 2
|
| 3 | 2 | nfi 1484 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 |
| This theorem is referenced by: clelsb1f 2351 nfnfc 2354 nfeq 2355 nfel 2356 cleqf 2372 sbabel 2374 r2alf 2522 r2exf 2523 nfrabw 2686 cbvralfw 2727 cbvrexfw 2728 cbvralf 2729 cbvrexf 2730 cbvrab 2769 rmo3f 2969 nfccdeq 2995 sbcabel 3079 cbvcsbw 3096 cbvcsb 3097 cbvralcsf 3155 cbvrexcsf 3156 cbvreucsf 3157 cbvrabcsf 3158 dfss2f 3183 nfdif 3293 nfun 3328 nfin 3378 nfop 3834 nfiunxy 3952 nfiinxy 3953 nfiunya 3954 nfiinya 3955 cbviun 3963 cbviin 3964 iunxsngf 4004 cbvdisj 4030 nfdisjv 4032 disjiun 4038 nfmpt 4135 cbvmptf 4137 nffrfor 4394 onintrab2im 4565 tfis 4630 nfxp 4701 opeliunxp 4729 iunxpf 4825 elrnmpt1 4928 fvmptssdm 5663 nfmpo 6013 cbvmpox 6022 fmpox 6285 nffrec 6481 cc3 7379 nfsum1 11638 nfsum 11639 fsum2dlemstep 11716 fisumcom2 11720 nfcprod1 11836 nfcprod 11837 cbvprod 11840 fprod2dlemstep 11904 fprodcom2fi 11908 ctiunctlemudc 12779 ctiunctlemfo 12781 |
| Copyright terms: Public domain | W3C validator |