ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcri Unicode version

Theorem nfcri 2330
Description: Consequence of the not-free predicate. (Note that unlike nfcr 2328, this does not require  y and  A to be disjoint.) (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1  |-  F/_ x A
Assertion
Ref Expression
nfcri  |-  F/ x  y  e.  A
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem nfcri
StepHypRef Expression
1 nfcri.1 . . 3  |-  F/_ x A
21nfcrii 2329 . 2  |-  ( y  e.  A  ->  A. x  y  e.  A )
32nfi 1473 1  |-  F/ x  y  e.  A
Colors of variables: wff set class
Syntax hints:   F/wnf 1471    e. wcel 2164   F/_wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325
This theorem is referenced by:  clelsb1f  2340  nfnfc  2343  nfeq  2344  nfel  2345  cleqf  2361  sbabel  2363  r2alf  2511  r2exf  2512  nfrabw  2675  cbvralfw  2716  cbvrexfw  2717  cbvralf  2718  cbvrexf  2719  cbvrab  2758  rmo3f  2958  nfccdeq  2984  sbcabel  3068  cbvcsbw  3085  cbvcsb  3086  cbvralcsf  3144  cbvrexcsf  3145  cbvreucsf  3146  cbvrabcsf  3147  dfss2f  3171  nfdif  3281  nfun  3316  nfin  3366  nfop  3821  nfiunxy  3939  nfiinxy  3940  nfiunya  3941  nfiinya  3942  cbviun  3950  cbviin  3951  iunxsngf  3991  cbvdisj  4017  nfdisjv  4019  disjiun  4025  nfmpt  4122  cbvmptf  4124  nffrfor  4380  onintrab2im  4551  tfis  4616  nfxp  4687  opeliunxp  4715  iunxpf  4811  elrnmpt1  4914  fvmptssdm  5643  nfmpo  5988  cbvmpox  5997  fmpox  6255  nffrec  6451  cc3  7330  nfsum1  11502  nfsum  11503  fsum2dlemstep  11580  fisumcom2  11584  nfcprod1  11700  nfcprod  11701  cbvprod  11704  fprod2dlemstep  11768  fprodcom2fi  11772  ctiunctlemudc  12597  ctiunctlemfo  12599
  Copyright terms: Public domain W3C validator