| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcri | Unicode version | ||
| Description: Consequence of the
not-free predicate. (Note that unlike nfcr 2331, this
does not require |
| Ref | Expression |
|---|---|
| nfcri.1 |
|
| Ref | Expression |
|---|---|
| nfcri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcri.1 |
. . 3
| |
| 2 | 1 | nfcrii 2332 |
. 2
|
| 3 | 2 | nfi 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: clelsb1f 2343 nfnfc 2346 nfeq 2347 nfel 2348 cleqf 2364 sbabel 2366 r2alf 2514 r2exf 2515 nfrabw 2678 cbvralfw 2719 cbvrexfw 2720 cbvralf 2721 cbvrexf 2722 cbvrab 2761 rmo3f 2961 nfccdeq 2987 sbcabel 3071 cbvcsbw 3088 cbvcsb 3089 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 cbvrabcsf 3150 dfss2f 3175 nfdif 3285 nfun 3320 nfin 3370 nfop 3825 nfiunxy 3943 nfiinxy 3944 nfiunya 3945 nfiinya 3946 cbviun 3954 cbviin 3955 iunxsngf 3995 cbvdisj 4021 nfdisjv 4023 disjiun 4029 nfmpt 4126 cbvmptf 4128 nffrfor 4384 onintrab2im 4555 tfis 4620 nfxp 4691 opeliunxp 4719 iunxpf 4815 elrnmpt1 4918 fvmptssdm 5649 nfmpo 5995 cbvmpox 6004 fmpox 6267 nffrec 6463 cc3 7351 nfsum1 11538 nfsum 11539 fsum2dlemstep 11616 fisumcom2 11620 nfcprod1 11736 nfcprod 11737 cbvprod 11740 fprod2dlemstep 11804 fprodcom2fi 11808 ctiunctlemudc 12679 ctiunctlemfo 12681 |
| Copyright terms: Public domain | W3C validator |