| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcri | Unicode version | ||
| Description: Consequence of the
not-free predicate. (Note that unlike nfcr 2342, this
does not require |
| Ref | Expression |
|---|---|
| nfcri.1 |
|
| Ref | Expression |
|---|---|
| nfcri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcri.1 |
. . 3
| |
| 2 | 1 | nfcrii 2343 |
. 2
|
| 3 | 2 | nfi 1486 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 |
| This theorem is referenced by: clelsb1f 2354 nfnfc 2357 nfeq 2358 nfel 2359 cleqf 2375 sbabel 2377 r2alf 2525 r2exf 2526 nfrabw 2689 cbvralfw 2731 cbvrexfw 2732 cbvralf 2733 cbvrexf 2734 cbvrab 2774 rmo3f 2977 nfccdeq 3003 sbcabel 3088 cbvcsbw 3105 cbvcsb 3106 cbvralcsf 3164 cbvrexcsf 3165 cbvreucsf 3166 cbvrabcsf 3167 dfss2f 3192 nfdif 3302 nfun 3337 nfin 3387 nfop 3849 nfiunxy 3967 nfiinxy 3968 nfiunya 3969 nfiinya 3970 cbviun 3978 cbviin 3979 iunxsngf 4019 cbvdisj 4045 nfdisjv 4047 disjiun 4054 nfmpt 4152 cbvmptf 4154 nffrfor 4413 onintrab2im 4584 tfis 4649 nfxp 4720 opeliunxp 4748 iunxpf 4844 elrnmpt1 4948 fvmptssdm 5687 nfmpo 6037 cbvmpox 6046 fmpox 6309 nffrec 6505 cc3 7415 nfsum1 11782 nfsum 11783 fsum2dlemstep 11860 fisumcom2 11864 nfcprod1 11980 nfcprod 11981 cbvprod 11984 fprod2dlemstep 12048 fprodcom2fi 12052 ctiunctlemudc 12923 ctiunctlemfo 12925 |
| Copyright terms: Public domain | W3C validator |