![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcri | Unicode version |
Description: Consequence of the
not-free predicate. (Note that unlike nfcr 2311, this
does not require ![]() ![]() |
Ref | Expression |
---|---|
nfcri.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcri |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcri.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfcrii 2312 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | nfi 1462 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-cleq 2170 df-clel 2173 df-nfc 2308 |
This theorem is referenced by: clelsb1f 2323 nfnfc 2326 nfeq 2327 nfel 2328 cleqf 2344 sbabel 2346 r2alf 2494 r2exf 2495 nfrabxy 2658 cbvralfw 2695 cbvrexfw 2696 cbvralf 2697 cbvrexf 2698 cbvrab 2736 rmo3f 2935 nfccdeq 2961 sbcabel 3045 cbvcsbw 3062 cbvcsb 3063 cbvralcsf 3120 cbvrexcsf 3121 cbvreucsf 3122 cbvrabcsf 3123 dfss2f 3147 nfdif 3257 nfun 3292 nfin 3342 nfop 3795 nfiunxy 3913 nfiinxy 3914 nfiunya 3915 nfiinya 3916 cbviun 3924 cbviin 3925 iunxsngf 3965 cbvdisj 3991 nfdisjv 3993 disjiun 3999 nfmpt 4096 cbvmptf 4098 nffrfor 4349 onintrab2im 4518 tfis 4583 nfxp 4654 opeliunxp 4682 iunxpf 4776 elrnmpt1 4879 fvmptssdm 5601 nfmpo 5944 cbvmpox 5953 fmpox 6201 nffrec 6397 cc3 7267 nfsum1 11364 nfsum 11365 fsum2dlemstep 11442 fisumcom2 11446 nfcprod1 11562 nfcprod 11563 cbvprod 11566 fprod2dlemstep 11630 fprodcom2fi 11634 ctiunctlemudc 12438 ctiunctlemfo 12440 |
Copyright terms: Public domain | W3C validator |