ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfabd Unicode version

Theorem nfabd 2332
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfabd.1  |-  F/ y
ph
nfabd.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfabd  |-  ( ph  -> 
F/_ x { y  |  ps } )

Proof of Theorem nfabd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . 2  |-  F/ z
ph
2 df-clab 2157 . . 3  |-  ( z  e.  { y  |  ps }  <->  [ z  /  y ] ps )
3 nfabd.1 . . . 4  |-  F/ y
ph
4 nfabd.2 . . . 4  |-  ( ph  ->  F/ x ps )
53, 4nfsbd 1970 . . 3  |-  ( ph  ->  F/ x [ z  /  y ] ps )
62, 5nfxfrd 1468 . 2  |-  ( ph  ->  F/ x  z  e. 
{ y  |  ps } )
71, 6nfcd 2307 1  |-  ( ph  -> 
F/_ x { y  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1453   [wsb 1755    e. wcel 2141   {cab 2156   F/_wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-nfc 2301
This theorem is referenced by:  nfsbcd  2974  nfcsb1d  3080  nfcsbd  3084  nfifd  3553  nfunid  3803  nfiotadw  5163  nfixpxy  6695
  Copyright terms: Public domain W3C validator