Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfabd | Unicode version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfabd.1 | |
nfabd.2 |
Ref | Expression |
---|---|
nfabd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 | |
2 | df-clab 2144 | . . 3 | |
3 | nfabd.1 | . . . 4 | |
4 | nfabd.2 | . . . 4 | |
5 | 3, 4 | nfsbd 1957 | . . 3 |
6 | 2, 5 | nfxfrd 1455 | . 2 |
7 | 1, 6 | nfcd 2294 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wnf 1440 wsb 1742 wcel 2128 cab 2143 wnfc 2286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-nfc 2288 |
This theorem is referenced by: nfsbcd 2956 nfcsb1d 3062 nfcsbd 3066 nfifd 3532 nfunid 3779 nfiotadw 5138 nfixpxy 6662 |
Copyright terms: Public domain | W3C validator |