ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfceqi Unicode version

Theorem nfceqi 2308
Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfceqi.1  |-  A  =  B
Assertion
Ref Expression
nfceqi  |-  ( F/_ x A  <->  F/_ x B )

Proof of Theorem nfceqi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfceqi.1 . . . . 5  |-  A  =  B
21eleq2i 2237 . . . 4  |-  ( y  e.  A  <->  y  e.  B )
32nfbii 1466 . . 3  |-  ( F/ x  y  e.  A  <->  F/ x  y  e.  B
)
43albii 1463 . 2  |-  ( A. y F/ x  y  e.  A  <->  A. y F/ x  y  e.  B )
5 df-nfc 2301 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
6 df-nfc 2301 . 2  |-  ( F/_ x B  <->  A. y F/ x  y  e.  B )
74, 5, 63bitr4i 211 1  |-  ( F/_ x A  <->  F/_ x B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1346    = wceq 1348   F/wnf 1453    e. wcel 2141   F/_wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-cleq 2163  df-clel 2166  df-nfc 2301
This theorem is referenced by:  nfcxfr  2309  nfcxfrd  2310
  Copyright terms: Public domain W3C validator