Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfceqi | Unicode version |
Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 |
Ref | Expression |
---|---|
nfceqi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfceqi.1 | . . . . 5 | |
2 | 1 | eleq2i 2242 | . . . 4 |
3 | 2 | nfbii 1471 | . . 3 |
4 | 3 | albii 1468 | . 2 |
5 | df-nfc 2306 | . 2 | |
6 | df-nfc 2306 | . 2 | |
7 | 4, 5, 6 | 3bitr4i 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wal 1351 wceq 1353 wnf 1458 wcel 2146 wnfc 2304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-cleq 2168 df-clel 2171 df-nfc 2306 |
This theorem is referenced by: nfcxfr 2314 nfcxfrd 2315 |
Copyright terms: Public domain | W3C validator |