ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfceqi Unicode version

Theorem nfceqi 2304
Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfceqi.1  |-  A  =  B
Assertion
Ref Expression
nfceqi  |-  ( F/_ x A  <->  F/_ x B )

Proof of Theorem nfceqi
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfceqi.1 . . . . 5  |-  A  =  B
21eleq2i 2233 . . . 4  |-  ( y  e.  A  <->  y  e.  B )
32nfbii 1461 . . 3  |-  ( F/ x  y  e.  A  <->  F/ x  y  e.  B
)
43albii 1458 . 2  |-  ( A. y F/ x  y  e.  A  <->  A. y F/ x  y  e.  B )
5 df-nfc 2297 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
6 df-nfc 2297 . 2  |-  ( F/_ x B  <->  A. y F/ x  y  e.  B )
74, 5, 63bitr4i 211 1  |-  ( F/_ x A  <->  F/_ x B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1341    = wceq 1343   F/wnf 1448    e. wcel 2136   F/_wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-nfc 2297
This theorem is referenced by:  nfcxfr  2305  nfcxfrd  2306
  Copyright terms: Public domain W3C validator