ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfneld Unicode version

Theorem nfneld 2479
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfneld.1  |-  ( ph  -> 
F/_ x A )
nfneld.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfneld  |-  ( ph  ->  F/ x  A  e/  B )

Proof of Theorem nfneld
StepHypRef Expression
1 df-nel 2472 . 2  |-  ( A  e/  B  <->  -.  A  e.  B )
2 nfneld.1 . . . 4  |-  ( ph  -> 
F/_ x A )
3 nfneld.2 . . . 4  |-  ( ph  -> 
F/_ x B )
42, 3nfeld 2364 . . 3  |-  ( ph  ->  F/ x  A  e.  B )
54nfnd 1680 . 2  |-  ( ph  ->  F/ x  -.  A  e.  B )
61, 5nfxfrd 1498 1  |-  ( ph  ->  F/ x  A  e/  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   F/wnf 1483    e. wcel 2176   F/_wnfc 2335    e/ wnel 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-cleq 2198  df-clel 2201  df-nfc 2337  df-nel 2472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator