ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeld Unicode version

Theorem nfeld 2352
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1  |-  ( ph  -> 
F/_ x A )
nfeqd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfeld  |-  ( ph  ->  F/ x  A  e.  B )

Proof of Theorem nfeld
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-clel 2189 . 2  |-  ( A  e.  B  <->  E. y
( y  =  A  /\  y  e.  B
) )
2 nfv 1539 . . 3  |-  F/ y
ph
3 nfcvd 2337 . . . . 5  |-  ( ph  -> 
F/_ x y )
4 nfeqd.1 . . . . 5  |-  ( ph  -> 
F/_ x A )
53, 4nfeqd 2351 . . . 4  |-  ( ph  ->  F/ x  y  =  A )
6 nfeqd.2 . . . . 5  |-  ( ph  -> 
F/_ x B )
76nfcrd 2350 . . . 4  |-  ( ph  ->  F/ x  y  e.  B )
85, 7nfand 1579 . . 3  |-  ( ph  ->  F/ x ( y  =  A  /\  y  e.  B ) )
92, 8nfexd 1772 . 2  |-  ( ph  ->  F/ x E. y
( y  =  A  /\  y  e.  B
) )
101, 9nfxfrd 1486 1  |-  ( ph  ->  F/ x  A  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   F/wnf 1471   E.wex 1503    e. wcel 2164   F/_wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-cleq 2186  df-clel 2189  df-nfc 2325
This theorem is referenced by:  nfneld  2467  nfraldw  2526  nfraldxy  2527  nfrexdxy  2528  nfreudxy  2668  nfsbc1d  3002  nfsbcd  3005  sbcrext  3063  nfsbcdw  3114  nfbrd  4074  nfriotadxy  5882  nfixpxy  6771
  Copyright terms: Public domain W3C validator