ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeld Unicode version

Theorem nfeld 2388
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1  |-  ( ph  -> 
F/_ x A )
nfeqd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfeld  |-  ( ph  ->  F/ x  A  e.  B )

Proof of Theorem nfeld
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-clel 2225 . 2  |-  ( A  e.  B  <->  E. y
( y  =  A  /\  y  e.  B
) )
2 nfv 1574 . . 3  |-  F/ y
ph
3 nfcvd 2373 . . . . 5  |-  ( ph  -> 
F/_ x y )
4 nfeqd.1 . . . . 5  |-  ( ph  -> 
F/_ x A )
53, 4nfeqd 2387 . . . 4  |-  ( ph  ->  F/ x  y  =  A )
6 nfeqd.2 . . . . 5  |-  ( ph  -> 
F/_ x B )
76nfcrd 2386 . . . 4  |-  ( ph  ->  F/ x  y  e.  B )
85, 7nfand 1614 . . 3  |-  ( ph  ->  F/ x ( y  =  A  /\  y  e.  B ) )
92, 8nfexd 1807 . 2  |-  ( ph  ->  F/ x E. y
( y  =  A  /\  y  e.  B
) )
101, 9nfxfrd 1521 1  |-  ( ph  ->  F/ x  A  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   F/wnf 1506   E.wex 1538    e. wcel 2200   F/_wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by:  nfneld  2503  nfraldw  2562  nfraldxy  2563  nfrexdxy  2564  nfreudxy  2705  nfsbc1d  3045  nfsbcd  3048  sbcrext  3106  nfsbcdw  3158  nfbrd  4129  nfriotadxy  5963  nfixpxy  6864
  Copyright terms: Public domain W3C validator