Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeld Unicode version

Theorem nfeld 2272
 Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1
nfeqd.2
Assertion
Ref Expression
nfeld

Proof of Theorem nfeld
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-clel 2111 . 2
2 nfv 1491 . . 3
3 nfcvd 2257 . . . . 5
4 nfeqd.1 . . . . 5
53, 4nfeqd 2271 . . . 4
6 nfeqd.2 . . . . 5
76nfcrd 2270 . . . 4
85, 7nfand 1530 . . 3
92, 8nfexd 1717 . 2
101, 9nfxfrd 1434 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wceq 1314  wnf 1419  wex 1451   wcel 1463  wnfc 2243 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-4 1470  ax-17 1489  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-nf 1420  df-cleq 2108  df-clel 2111  df-nfc 2245 This theorem is referenced by:  nfneld  2386  nfraldxy  2442  nfrexdxy  2443  nfreudxy  2579  nfsbc1d  2896  nfsbcd  2899  sbcrext  2956  nfbrd  3941  nfriotadxy  5704  nfixpxy  6577
 Copyright terms: Public domain W3C validator