ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeld Unicode version

Theorem nfeld 2324
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1  |-  ( ph  -> 
F/_ x A )
nfeqd.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfeld  |-  ( ph  ->  F/ x  A  e.  B )

Proof of Theorem nfeld
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-clel 2161 . 2  |-  ( A  e.  B  <->  E. y
( y  =  A  /\  y  e.  B
) )
2 nfv 1516 . . 3  |-  F/ y
ph
3 nfcvd 2309 . . . . 5  |-  ( ph  -> 
F/_ x y )
4 nfeqd.1 . . . . 5  |-  ( ph  -> 
F/_ x A )
53, 4nfeqd 2323 . . . 4  |-  ( ph  ->  F/ x  y  =  A )
6 nfeqd.2 . . . . 5  |-  ( ph  -> 
F/_ x B )
76nfcrd 2322 . . . 4  |-  ( ph  ->  F/ x  y  e.  B )
85, 7nfand 1556 . . 3  |-  ( ph  ->  F/ x ( y  =  A  /\  y  e.  B ) )
92, 8nfexd 1749 . 2  |-  ( ph  ->  F/ x E. y
( y  =  A  /\  y  e.  B
) )
101, 9nfxfrd 1463 1  |-  ( ph  ->  F/ x  A  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   F/wnf 1448   E.wex 1480    e. wcel 2136   F/_wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-nfc 2297
This theorem is referenced by:  nfneld  2439  nfraldw  2498  nfraldxy  2499  nfrexdxy  2500  nfreudxy  2639  nfsbc1d  2967  nfsbcd  2970  sbcrext  3028  nfsbcdw  3079  nfbrd  4027  nfriotadxy  5806  nfixpxy  6683
  Copyright terms: Public domain W3C validator