Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeld | Unicode version |
Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | |
nfeqd.2 |
Ref | Expression |
---|---|
nfeld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-clel 2161 | . 2 | |
2 | nfv 1516 | . . 3 | |
3 | nfcvd 2309 | . . . . 5 | |
4 | nfeqd.1 | . . . . 5 | |
5 | 3, 4 | nfeqd 2323 | . . . 4 |
6 | nfeqd.2 | . . . . 5 | |
7 | 6 | nfcrd 2322 | . . . 4 |
8 | 5, 7 | nfand 1556 | . . 3 |
9 | 2, 8 | nfexd 1749 | . 2 |
10 | 1, 9 | nfxfrd 1463 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wnf 1448 wex 1480 wcel 2136 wnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-cleq 2158 df-clel 2161 df-nfc 2297 |
This theorem is referenced by: nfneld 2439 nfraldw 2498 nfraldxy 2499 nfrexdxy 2500 nfreudxy 2639 nfsbc1d 2967 nfsbcd 2970 sbcrext 3028 nfsbcdw 3079 nfbrd 4027 nfriotadxy 5806 nfixpxy 6683 |
Copyright terms: Public domain | W3C validator |