| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeld | Unicode version | ||
| Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeqd.1 |
|
| nfeqd.2 |
|
| Ref | Expression |
|---|---|
| nfeld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clel 2203 |
. 2
| |
| 2 | nfv 1552 |
. . 3
| |
| 3 | nfcvd 2351 |
. . . . 5
| |
| 4 | nfeqd.1 |
. . . . 5
| |
| 5 | 3, 4 | nfeqd 2365 |
. . . 4
|
| 6 | nfeqd.2 |
. . . . 5
| |
| 7 | 6 | nfcrd 2364 |
. . . 4
|
| 8 | 5, 7 | nfand 1592 |
. . 3
|
| 9 | 2, 8 | nfexd 1785 |
. 2
|
| 10 | 1, 9 | nfxfrd 1499 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-cleq 2200 df-clel 2203 df-nfc 2339 |
| This theorem is referenced by: nfneld 2481 nfraldw 2540 nfraldxy 2541 nfrexdxy 2542 nfreudxy 2682 nfsbc1d 3022 nfsbcd 3025 sbcrext 3083 nfsbcdw 3135 nfbrd 4105 nfriotadxy 5931 nfixpxy 6827 |
| Copyright terms: Public domain | W3C validator |