ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxfrd Unicode version

Theorem nfxfrd 1499
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfbii.1  |-  ( ph  <->  ps )
nfxfrd.2  |-  ( ch 
->  F/ x ps )
Assertion
Ref Expression
nfxfrd  |-  ( ch 
->  F/ x ph )

Proof of Theorem nfxfrd
StepHypRef Expression
1 nfxfrd.2 . 2  |-  ( ch 
->  F/ x ps )
2 nfbii.1 . . 3  |-  ( ph  <->  ps )
32nfbii 1497 . 2  |-  ( F/ x ph  <->  F/ x ps )
41, 3sylibr 134 1  |-  ( ch 
->  F/ x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473
This theorem depends on definitions:  df-bi 117  df-nf 1485
This theorem is referenced by:  nf3and  1593  nfbid  1612  nfsbxy  1971  nfsbxyt  1972  nfeud  2071  nfmod  2072  nfeqd  2365  nfeld  2366  nfabdw  2369  nfabd  2370  nfned  2472  nfneld  2481  nfraldw  2540  nfraldxy  2541  nfrexdxy  2542  nfraldya  2543  nfrexdya  2544  nfsbc1d  3022  nfsbcd  3025  nfsbcdw  3135  nfbrd  4105
  Copyright terms: Public domain W3C validator